def aggregate_parameter_sets(pixels_dom, all_cbr_files, parnames, ens_size, n_chains_agg, conv_chains_pkl): # aggregate parameter sets between representative pixels for a given pft, only if representative pixels are also dominant # get cbrs par_set_agg = [] for pixel in pixels_dom: par_set = [] if pixel in conv_chains_pkl['pixel'].values: print(pixel) # get pixel's convergent chain numbers best_chains = conv_chains_pkl.loc[ conv_chains_pkl['pixel'] == pixel]['bestchains'].values[0][1:] print(best_chains) # aggregate bestchains from optimal posteriors par_set_orig = [] for chain in best_chains: file = [ i for i in all_cbr_files if pixel + '_' + chain + '.cbr' in i ][0] par_set.append( autil.modulus_Bday_Fday( rwb.read_cbr_file(file, {'nopars': len(parnames)}), parnames)) else: par_set = np.ones( (ens_size * n_chains_agg, len(parnames))) * np.nan par_set_agg.append(np.vstack(par_set)) par_set_agg = np.vstack(par_set_agg) print(par_set_agg.shape) random_rows = np.random.choice(par_set_agg.shape[0], ens_size * n_chains_agg, replace=False) best_cbrs_sampled = par_set_agg[random_rows, :] print(best_cbrs_sampled.shape) print(np.nanmedian(best_cbrs_sampled, axis=0)) return best_cbrs_sampled
def main(): # set run information to read model_id = sys.argv[1] mcmc_id = sys.argv[2] # 119 for normal, 3 for DEMCMC n_iter = sys.argv[3] nbe_optimization = sys.argv[4] # 'OFF' or 'ON' ens_size = 250 assim_type = sys.argv[5] n_chains_agg = 4 # set directories cur_dir = os.getcwd() + '/' misc_dir = cur_dir + '../../misc/' cbf_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '/' + model_id + '/' cbr_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '/' + model_id + '/' plot_dir = cur_dir + '../../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames('../../misc/', model_id) # decide which tasks to perform find_rep_pixels = True agg_parameters = True submit_ic_opt = True submit_forward = False ############################## Identify and save representative pixels ################################################# n_reps = 5 if find_rep_pixels: # load globcover data gl = read_pickle(misc_dir + 'globcover_to_card.pkl') # load labels gl_lbls = list( read_csv(misc_dir + 'Globcover2009_Legend.csv')['Value'].values) n_classes = len(gl_lbls) print(gl_lbls) # load list of land pixels pixels = list( set([file[-8:-4] for file in glob.glob(cbf_dir + '*.cbf')])) pixels.sort() # open csv for save out f = open(misc_dir + 'globcover_fracs.csv', 'w') writer = csv.writer(f) writer.writerow( [item for sublist in [['pixel'], gl_lbls] for item in sublist]) # get list of average pft fractions by pixel av_fracs = np.ones((len(pixels), n_classes)) * np.nan types_present = [] for pixel in pixels: ind = pixels.index(pixel) if np.mod(ind, 100) == 0: print(ind) # get lc information types_at_geos_pixel, counts_at_geos_pixel = gl.loc[ gl['pixel'] == pixel]['types'].values[0][0], gl.loc[ gl['pixel'] == pixel]['counts'].values[0][0] types_at_geos_pixel, counts_at_geos_pixel = remove_nodata_pixels( types_at_geos_pixel, counts_at_geos_pixel) types_at_geos_pixel, counts_at_geos_pixel = append_all_types( types_at_geos_pixel, counts_at_geos_pixel, gl_lbls) types_at_geos_pixel, counts_at_geos_pixel = merge_types( types_at_geos_pixel, counts_at_geos_pixel, 170, 160) types_at_geos_pixel, counts_at_geos_pixel = merge_types( types_at_geos_pixel, counts_at_geos_pixel, 180, 160) types_present.append(types_at_geos_pixel[counts_at_geos_pixel > 0]) if np.sum(counts_at_geos_pixel) > 0: av_fracs[ind, :] = counts_at_geos_pixel / np.sum( counts_at_geos_pixel ) # average biome fraction across mstmip pixels within coarse pixel writer.writerow([ item for sublist in [[pixel], av_fracs[ind, :]] for item in sublist ]) #plot_pie(av_fracs[ind], pixel, gl_lbls, autil.rowcol_to_latlon([pixel]), plot_dir+'pie/', 'gl') reps, mxs, mxdoms = find_rep(av_fracs, pixels, n_reps) plot_reps(mxs, mxdoms, gl_lbls, plot_dir + 'pie/', 'rep_pix_gl_merge170+180to160') rep_df = fill_df(gl_lbls, reps, mxs, mxdoms) #rep_df.to_pickle(misc_dir+ 'rep_pixels_globcover.pkl') print(rep_df) f.close() ############################## Generate aggregated parameter sets ###################################################### ic_inds = autil.get_inds_ic(model_id) conv_chains = read_pickle(cbr_dir + model_id + assim_type + '_ALL' + '_MCMC' + mcmc_id + '_' + n_iter + '_best_subset.pkl') conv_chains.columns = ['pixel', 'bestchains', 'conv'] #rename columns for easier access if agg_parameters: #f_pft = open(misc_dir + 'pft/par_preds/par_set_agg_'+ model_id + assim_type+'_MCMC'+mcmc_id + '_'+n_iter + '.csv', 'w') #w_pft = csv.writer(f_pft) # load list of cbrs files = glob.glob(cbr_dir + '*MCMC' + mcmc_id + '_' + n_iter + '_*.cbr') files.sort() # get aggregated parameter sets from representative pixels par_set_agg = [] for pft in gl_lbls: print(pft) print('PFT: ' + str(pft)) # isolate row in dataframe corresponding to given pft rep_df_pft = rep_df.loc[rep_df['pft'] == int(pft)] # get list of pixels that are dominant rep_pixels_pft = [ rep_df_pft['reppix' + str(i)].values[0] for i in range(1, n_reps + 1) ] doms = [ rep_df_pft['reppix' + str(i) + 'fracdom'].values[0] for i in range(1, n_reps + 1) ] pixels_dom = [ pixel for pixel in rep_pixels_pft if doms[rep_pixels_pft.index(pixel)] == 1 ] if len(pixels_dom) > 0: par_set_agg.append( aggregate_parameter_sets(pixels_dom, files, parnames, ens_size, n_chains_agg, conv_chains)) else: par_set_agg.append( np.ones((ens_size * n_chains_agg, len(parnames))) * np.nan) #w_pft.writerow(np.nanmedian(par_set_agg[gl_lbls.index(pft)], axis=0)) #if np.sum(~np.isnan(par_set_agg[gl_lbls.index(pft)]))>0: autil.plot_par_histograms(par_set_agg[gl_lbls.index(pft)], parnames, savepath=plot_dir+'dists/', title='globcover_agg_PFT'+str(pft)+'_'+model_id+assim_type+'_'+mcmc_id+'_'+n_iter+'.pdf') #f_pft.close() ############################################################################################################################################ ################################### copy cbfs and substitute pars for IC optimization ###################################################### # set up cbfs for IC assimilation os.chdir(cbf_dir) cbf_files = glob.glob('*.cbf') cbf_files.sort() os.chdir(cur_dir + '/../') # set additional directories mdf_dir = '../code/CARDAMOM_2.1.6c/C/projects/CARDAMOM_MDF/' if nbe_optimization == 'OFF' else '../code/CARDAMOM_Uma_2.1.6c-master/C/projects/CARDAMOM_MDF/' runmodel_dir = '../code/CARDAMOM_2.1.6c/C/projects/CARDAMOM_GENERAL/' if nbe_optimization == 'OFF' else '../code/CARDAMOM_Uma_2.1.6c-master/C/projects/CARDAMOM_GENERAL/' cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '/' + model_id + '/' cbf_pft_ic_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '_pft_ic/' + model_id + '/' cbr_pft_dir = '../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '_pft/' + model_id + '/' output_dir = '../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '/' + model_id + '/' output_pft_dir = '../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '_pft/' + model_id + '/' if mcmc_id == '119': frac_save_out = str(int(int(n_iter) / 500)) elif mcmc_id == '3': frac_save_out = str(int( int(n_iter) / 500 * 100)) # n_iterations/ frac_save_out * 100 will be ensemble size par_set_csv = read_csv(misc_dir + 'pft/par_preds/par_set_agg_' + model_id + assim_type + '_MCMC' + mcmc_id + '_' + n_iter + '.csv', header=None).values if submit_ic_opt: txt_filename = 'pft_ic_assim_list_' + model_id + assim_type + '_MCMC' + mcmc_id + '_' + n_iter + '.txt' txt_file = open(txt_filename, 'w') for cbf_file in cbf_files: print(cbf_file) cbf_data = rwb.read_cbf_file(cbf_dir + cbf_file) cbf_pixel = cbf_file[-8:-4] if cbf_pixel in conv_chains['pixel'].values: for pft in gl_lbls: if (int(pft) in types_present[pixels.index(cbf_pixel)]) & ( ~np.isnan( par_set_csv[gl_lbls.index(pft), :]).all()): par_set_agg_cbf = np.copy( par_set_csv[gl_lbls.index(pft), :]) # re-transform bday, fday to proper range par_set_agg_cbf[11] += 365.25 par_set_agg_cbf[14] += 365.25 parpriors = np.concatenate( (par_set_agg_cbf, np.ones(50 - len(parnames)) * -9999.)) parpriorunc = np.concatenate( (np.ones(len(parnames)) * 1.001, np.ones(50 - len(parnames)) * -9999.)) for ic_ind in ic_inds: parpriors[ic_ind] = -9999. parpriorunc[ic_ind] = -9999. if nbe_optimization == 'ON': parpriors[len(parnames) - 1] = -9999 parpriorunc[len(parnames) - 1] = -9999 cbf_data['PARPRIORS'] = parpriors.reshape(-1, 1) cbf_data['PARPRIORUNC'] = parpriorunc.reshape(-1, 1) f = cbf_file[: -9] + '_MCMC' + mcmc_id + '_' + n_iter + '_PFT' + str( pft) + '_assim_' + cbf_pixel #rwb.CARDAMOM_WRITE_BINARY_FILEFORMAT(cbf_data, cbf_pft_ic_dir + f +'.cbf') txt_file.write( '%sCARDAMOM_MDF.exe %s%s %s%s %s 0 %s 0.001 %s 1000' % (mdf_dir, cbf_pft_ic_dir[3:], f + '.cbf', cbr_pft_dir, f + '.cbr', n_iter, frac_save_out, mcmc_id)) txt_file.write('\n') if types_present[pixels.index( cbf_pixel)][-1] == int(pft) else txt_file.write( ' && ') txt_file.close() sh_file = open(txt_filename[:-3] + 'sh', 'w') autil.fill_in_sh(sh_file, array_size=len(conv_chains['pixel'].values), n_hours=48, txt_file=txt_filename, combined=True) if submit_forward: txt_filename = 'pft_ic_forward_list_' + model_id + assim_type + '_MCMC' + mcmc_id + '_' + n_iter + '.txt' txt_file = open(txt_filename, 'w') for cbf_file in cbf_files: print(cbf_file) cbf_data = rwb.read_cbf_file(cbf_dir + cbf_file) cbf_pixel = cbf_file[-8:-4] if cbf_pixel in conv_chains['pixel'].values: for pft in gl_lbls: if (int(pft) in types_present[pixels.index(cbf_pixel)]) & ( ~np.isnan( par_set_csv[gl_lbls.index(pft), :]).all()): f = cbf_file[: -9] + '_MCMC' + mcmc_id + '_' + n_iter + '_PFT' + str( pft) + '_assim_' + cbf_pixel if len(glob.glob(cbr_pft_dir + f + '.cbr')) > 0: cbr_assim = rwb.read_cbr_file( glob.glob(cbr_pft_dir + f + '.cbr')[0], {'nopars': len(parnames)}) ff = cbf_file[: -9] + '_MCMC' + mcmc_id + '_' + n_iter + '_PFT' + str( pft) + '_forward_' + cbf_pixel cbr_forward = par_set_csv[gl_lbls.index(pft), :] for ic_ind in ic_inds: cbr_forward[ic_ind] = np.nanmedian( cbr_assim[:, ic_ind]) cbr_forward = cbr_forward.reshape(1, len(parnames)) rwb.write_cbr_file(cbr_forward, cbr_pft_dir + ff + '.cbr') txt_file.write( '%sCARDAMOM_RUN_MODEL.exe %s%s %s%s %s%s %s%s %s%s %s%s' % (runmodel_dir, cbf_dir[3:], cbf_file, cbr_pft_dir, ff + '.cbr', output_pft_dir, 'fluxfile_' + ff + '.bin', output_pft_dir, 'poolfile_' + ff + '.bin', output_pft_dir, 'edcdfile_' + ff + '.bin', output_pft_dir, 'probfile_' + ff + '.bin')) txt_file.write('\n') if types_present[pixels.index( cbf_pixel)][-1] == int( pft) else txt_file.write(' && ') txt_file.close() sh_file = open(txt_filename[:-3] + 'sh', 'w') autil.fill_in_sh(sh_file, array_size=len(conv_chains['pixel'].values), n_hours=1, txt_file=txt_filename, combined=True) return
def main(): combinations = [['811', '119', '40000000'], ['811', '3', '1000000'], ['911', '119', '40000000']] assim_type = '_longadapted' metric = sys.argv[1] vrs = [ 'NBE', 'cumNBE', 'LAI', 'GPP', 'Reco', 'Rauto', 'Rhet', 'lit', 'root', 'som', 'wood' ] pixels = [ '3809', '3524', '2224', '4170', '1945', '3813', '4054', '3264', '1271', '3457' ] ens_spread = np.ones( (len(pixels), len(vrs), len(combinations))) * float('nan') conv = np.ones((len(pixels), len(combinations))) * float('nan') cur_dir = os.getcwd() + '/' for pixel in pixels: comb_count = 0 for comb in combinations: model_id = comb[0] mcmc_id = comb[1] it = comb[2] cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '/' + model_id + '/' cbr_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '/' + model_id + '/' output_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '/' + model_id + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames(cur_dir + '../../misc/', model_id) os.chdir(cur_dir + cbr_dir) files = glob.glob('*MCMC' + mcmc_id + '_' + it + '_' + pixel + '*.cbr') pixel_chains = autil.find_all_chains(files, pixel) pixel_chains.sort() # filenames if model_id == '911': pixel_chains = pixel_chains[-4:] print(pixel_chains) cbf_pixel = rwb.read_cbf_file( cur_dir + cbf_dir + pixel_chains[0].partition('_MCMC')[0] + '_' + pixel + '.cbf') cbr_chain_list = [] for pixel_chain in pixel_chains: print(pixel_chain) cbr_chain = rwb.read_cbr_file(pixel_chain, {'nopars': len(parnames)}) cbr_pixel = np.copy(cbr_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (cbr_pixel, cbr_chain), axis=0) flux_chain = rwb.readbinarymat( cur_dir + output_dir + 'fluxfile_' + pixel_chain[:-3] + 'bin', [ cbf_pixel['nodays'], autil.get_nofluxes_nopools_lma(model_id)[0] ]) pool_chain = rwb.readbinarymat( cur_dir + output_dir + 'poolfile_' + pixel_chain[:-3] + 'bin', [ cbf_pixel['nodays'] + 1, autil.get_nofluxes_nopools_lma(model_id)[1] ]) flux_pixel = np.copy(flux_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (flux_pixel, flux_chain), axis=0) pool_pixel = np.copy(pool_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (pool_pixel, pool_chain), axis=0) cbr_chain_list.append(cbr_chain) print(np.shape(cbr_chain)) print(np.shape(cbr_pixel)) gr = autil.gelman_rubin(cbr_chain_list) print('%i of %i parameters converged' % (sum(gr < 1.2), len(parnames))) conv[pixels.index(pixel), comb_count] = sum(gr < 1.2) / len(parnames) * 100 for var in vrs: print(var) try: obs = cbf_pixel['OBS'][var] obs[obs == -9999] = float('nan') except: obs = np.ones(cbf_pixel['nodays']) * np.nan n_obs = np.sum(np.isfinite(obs)) fwd_data = autil.get_output( var, model_id, flux_pixel, pool_pixel, cbr_pixel, autil.get_nofluxes_nopools_lma(model_id)[2]) if len(fwd_data) > 0: if fwd_data.shape[1] > cbf_pixel['nodays']: fwd_data = fwd_data[:, :-1] fwd_data = autil.remove_outliers(fwd_data) med = np.nanmedian(fwd_data, axis=0) ub = np.nanpercentile(fwd_data, 75, axis=0) lb = np.nanpercentile(fwd_data, 25, axis=0) ens_spread[pixels.index(pixel), vrs.index(var), comb_count] = np.nanmean( abs(ub - lb)) if metric == 'spread' else np.sqrt( np.nansum((med - obs)**2) / n_obs) comb_count += 1 for var in vrs: autil.plot_spread_v_iter( ens_spread, pixels, vrs.index(var), var, it, metric, cur_dir + plot_dir + 'spread_v_iter', 'iter_test_compare_' + assim_type + '_' + model_id + '_' + var + '_' + metric, single_val=True ) #'iter_test_MCMC'+mcmc_id+'_'+model_id+'_'+var + '_' + metric) autil.plot_conv_v_iter(conv, pixels, it, cur_dir + plot_dir + 'spread_v_iter', 'iter_test_compare' + assim_type + '_' + model_id + '_conv', single_val=True) return
def main(): # get specifications for run to read model_ids = ['811','811','911','911'] assim_type = '_p25adapted' ens_size = 500 # get pixels, ids and number of iterations to read cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf'+assim_type+'/' + model_ids[0] + '/' pixels = ['3809','3524','2224','4170','1945','3813','4054','3264','1271','3457'] mcmc_ids = ['119','3','3','119'] n_iters = ['40000000','1000000','1000000','40000000'] nbe_mae, lai_mae, abgb_mae, gpp_mae = [], [], [], [] # run through pixels for pixel in pixels: # get that pixel's outputs for each MCMCID nbe_pred, lai_pred, abgb_pred, gpp_pred = [], [], [], [] for model_id, mcmc_id, n_iter in zip(model_ids, mcmc_ids, n_iters): # set directories cur_dir = os.getcwd() + '/' cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf'+assim_type+'/' + model_id + '/' cbr_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr'+assim_type+'/' + model_id + '/' output_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output'+assim_type+'/' + model_id + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames('../../misc/', model_id) # read cbf file for that pixel cbf_pixel = rwb.read_cbf_file(glob.glob(cbf_dir + '*_' + pixel+'.cbf')[0]) # read obs and obs unc for that pixel nbe_obs, lai_obs, abgb_obs, sif_obs = cbf_pixel['OBS']['NBE'], cbf_pixel['OBS']['LAI'], cbf_pixel['OBS']['ABGB'], cbf_pixel['OBS']['GPP'] nbe_an_unc, nbe_seas_unc, lai_unc, abgb_unc = cbf_pixel['OBSUNC']['NBE']['annual_unc'], cbf_pixel['OBSUNC']['NBE']['seasonal_unc'], cbf_pixel['OTHER_OBS']['MLAI']['unc'], cbf_pixel['OBSUNC']['ABGB']['unc'] conv_chains_pkl = read_pickle(glob.glob(cbr_dir + model_id + assim_type + '*_MCMC'+mcmc_id + '_'+n_iter+'_best_subset.pkl')[0]) conv_chains_pkl.columns = ['pixel','bestchains','conv']# if model_id!='911' else ['pixel','bestchains'] #rename columns for easier access # grab cbrs corresponding to that pixel, MCMCID and number of iterations files = glob.glob(cbr_dir + '*MCMC'+mcmc_id+'_' + n_iter + '_'+ pixel+'*.cbr') files.sort() best_chains = conv_chains_pkl.loc[conv_chains_pkl['pixel']==pixel]['bestchains'].values[0][1:] # run through cbrs cbr_chain_list = [] for chain in best_chains: print(chain) # read cbr for one file and transform Bday, Fday file = [i for i in files if pixel+'_'+chain+'.cbr' in i][0] cbr_chain = autil.modulus_Bday_Fday(rwb.read_cbr_file(file, {'nopars': len(parnames)}), parnames) print(cbr_chain.shape) # read forward run for that cbr flux_chain = rwb.readbinarymat(output_dir + 'fluxfile_' + file.partition(cbr_dir)[-1][:-3]+'bin', [cbf_pixel['nodays'], autil.get_nofluxes_nopools_lma(model_id)[0]]) pool_chain = rwb.readbinarymat(output_dir + 'poolfile_' + file.partition(cbr_dir)[-1][:-3]+'bin', [cbf_pixel['nodays']+1, autil.get_nofluxes_nopools_lma(model_id)[1]]) # add chain to list for GR calculation if np.shape(cbr_chain)[0]==ens_size: cbr_chain_list.append(cbr_chain) # add forward run chain to aggregated matrix flux_pixel = np.copy(flux_chain) if best_chains.index(chain)==0 else np.concatenate((flux_pixel, flux_chain), axis=0) pool_pixel = np.copy(pool_chain) if best_chains.index(chain)==0 else np.concatenate((pool_pixel, pool_chain), axis=0) # compute gelman rubin if len(cbr_chain_list)>1: gr = autil.gelman_rubin(cbr_chain_list) print('%i of %i parameters converged' % (sum(gr<1.2), len(parnames))) else: gr = np.nan cbr_pixel = np.vstack(cbr_chain_list) print(pool_pixel.shape) print(cbr_pixel.shape) # nbe, lai, and abgb predictions at pixel # list with elements corresponding to MCMCIDs considered (e.g. first element is MCMCID 119) nbe_pred.append(autil.get_output('NBE', model_id, flux_pixel, pool_pixel, cbr_pixel, autil.get_nofluxes_nopools_lma(model_id)[2])) lai_pred.append(autil.get_output('LAI', model_id, flux_pixel, pool_pixel, cbr_pixel, autil.get_nofluxes_nopools_lma(model_id)[2])[:,:-1]) abgb_pred.append(autil.get_output('ABGB', model_id, flux_pixel, pool_pixel, cbr_pixel, autil.get_nofluxes_nopools_lma(model_id)[2])[:,:-1]) gpp_pred.append(autil.get_output('GPP', model_id, flux_pixel, pool_pixel, cbr_pixel, autil.get_nofluxes_nopools_lma(model_id)[2])) # plot time series lbls = [model_id+'_MCMC'+mcmc_id for model_id, mcmc_id in zip(model_ids, mcmc_ids)] plot_output_ts(cbf_pixel, nbe_pred, nbe_obs, nbe_an_unc, lbls=lbls, var='NBE', savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models'+'_NBE_'+pixel+'.png') plot_output_ts(cbf_pixel, lai_pred, lai_obs, lai_unc, lbls=lbls, var='LAI', savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models'+'_LAI_'+pixel+'.png') plot_output_ts(cbf_pixel, gpp_pred, sif_obs, 0, lbls=lbls, var='GPP', savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models'+'_GPP_'+pixel+'.png') # plot box plots plot_dist_compare(nbe_pred, nbe_obs, [nbe_an_unc, nbe_seas_unc], lbls=lbls, var='NBE', savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models'+'_NBE_'+pixel+'_dist_') plot_dist_compare(lai_pred, lai_obs, lai_unc, lbls=lbls, var='LAI', savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models'+'_LAI_'+pixel+'_dist_') plot_dist_compare(abgb_pred, abgb_obs, abgb_unc, lbls=lbls, var='ABGB', savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models'+'_ABGB_'+pixel+'_dist_') # plot obs vs median comparison nbe_mae.append([mae_real_numbers_only(f, nbe_obs)[0] for f in nbe_pred]) lai_mae.append([mae_real_numbers_only(f, lai_obs)[0] for f in lai_pred]) abgb_mae.append([mae_real_numbers_only(f, abgb_obs)[0] for f in abgb_pred]) print(rank_mae(nbe_mae, lbls)) print(rank_mae(lai_mae, lbls)) print(rank_mae(abgb_mae, lbls)) plot_maes(nbe_mae, pixels, savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models_NBE_mae') plot_maes(lai_mae, pixels, savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models_LAI_mae') plot_maes(abgb_mae, pixels, savepath=cur_dir+plot_dir+'demcmc_mcmc/', title='all_models_ABGB_mae') return
def main(): # set run information to read model_id = sys.argv[1] mcmc_id = sys.argv[2] # 119 for normal, 3 for DEMCMC n_iter = sys.argv[3] ens_size = 500 assim_type = '_longadapted' # set directories cur_dir = os.getcwd() + '/' misc_dir = cur_dir + '/../../misc/' cbf_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '/' + model_id + '/' cbr_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '/' + model_id + '/' plot_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames('../../misc/', model_id) # load map containing the location of each mstmip pixel on the GEOSCHEM grid pixel_nums = np.load(misc_dir + 'mstmip_pixel_nums.npy') # load map of biome fractions from mstmip with np.load(misc_dir + 'mstmip_biome_frac.npz') as data: biome_frac = data['arr_0'] n_classes = biome_frac.shape[0] # load list of land pixels pixels = list(set([file[-8:-4] for file in glob.glob(cbf_dir + '*.cbf')])) # load list of cbrs files = glob.glob(cbr_dir + '*MCMC' + mcmc_id + '_' + n_iter + '_*.cbr') # fill X and Y n_regr_models = len(parnames) X = np.ones( (len(pixels), n_classes)) * np.nan # shape n_samples, n_features y = np.ones( (n_regr_models, len(pixels))) * np.nan # shape n_pars, n_samples for pixel in pixels: ind = pixels.index(pixel) if np.mod(ind, 10) == 0: print(ind) # get lc information locs = [pixel_nums == float(pixel)][0] fracs_at_geos_pixel = no_water_pixels(biome_frac[:, locs]) av_fracs = np.nanmean( fracs_at_geos_pixel, axis=1 ) # average biome fraction across mstmip pixels within coarse pixel X[ind, :] = av_fracs # get parameter information pixel_chains = autil.find_all_chains(files, pixel) pixel_chains.sort() # filenames # concatenate across chains if len(pixel_chains) > 0: for pixel_chain in pixel_chains: cbr_chain = rwb.read_cbr_file(pixel_chain, {'nopars': len(parnames)}) cbr_pixel = np.copy(cbr_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (cbr_pixel, cbr_chain), axis=0) y[:, ind] = np.nanmedian(cbr_pixel, axis=0) # remove nan values so regression runs Xr, yr = drop_nan(X, y) # set up regression models y_test_all_pars, y_pred_all_pars = [], [] for regr_model in range(n_regr_models): print('running regression for ' + parnames[regr_model] + ' . . . ') # split train and test sets, 60-40 X_train, X_test, y_train, y_test = train_test_split(Xr, yr[regr_model, :], test_size=0.4) y_test_all_pars.append(y_test) # fit regression model on train regr = LinearRegression().fit(X_train, y_train) # make predictions on test set y_pred_all_pars.append(regr.predict(X_test)) # make summary scatter plot plot_scatter_test_pred( y_test_all_pars, y_pred_all_pars, parnames, plot_dir + 'lc_scat/', 'par_preds_' + model_id + '_MCMC' + mcmc_id + '_' + n_iter + assim_type) return
def main(): cur_dir = os.getcwd() + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' os.chdir(plot_dir + 'dists/') # get list of model ids models_full = list(set([el.split('_')[0] for el in glob.glob('*.png')])) # remove 101, temporary until 102-->101 models_full.remove('102') os.chdir(cur_dir) # set lists of variables and pixels vrs = [ 'NBE', 'cumNBE', 'LAI', 'GPP', 'Reco', 'Rauto', 'Rhet', 'lit', 'root', 'som', 'wood' ] pixels = [ '3809', '3524', '2224', '4170', '1945', '3813', '4054', '3264', '1271', '3457' ] # set MCMC ID mcmc_id = sys.argv[1] n_iter = sys.argv[2] assim_type = '_longadapted' nmodels_leave_out = sys.argv[3] models = random.sample(models_full, len(models_full) - int(nmodels_leave_out)) print(models) # dataframe will hold model structural uncertainty (Ms) and model parametric uncertainty (Mp) for each pixel-var combination # n is number of models that make up the suite partitioning = DataFrame(columns={'Ms', 'Mp', 'n'}) df_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/processed_df/' for var in vrs: print('Variable: ' + var) Mp_pixels = np.zeros( len(pixels)) * np.nan # list of Mp for each pixel, for mapping for pixel in pixels: print('Pixel: ' + pixel) nsteps = 228 if assim_type == '_longadapted' else 240 meds, ub, lb = np.zeros((len(models), nsteps)) * np.nan, np.zeros( (len(models), nsteps) ) * np.nan, np.zeros( (len(models), nsteps) ) * np.nan # medians, upper bounds, lower bounds of prediction through time Mp, n = 0, 0 for model in models: print(model) cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '/' + model + '/' cbr_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '/' + model + '/' output_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '/' + model + '/' parnames = autil.get_parnames(cur_dir + '../../misc/', model) os.chdir(cur_dir + cbr_dir) #files = set(glob.glob('*.cbr')) - set(glob.glob('*MCMC'+mcmc_id+'*.cbr')) #files = glob.glob('*MCMC'+mcmc_id+'*.cbr') files = set( glob.glob('*MCMC' + mcmc_id + '_' + n_iter + '_*.cbr')) pixel_chains = autil.find_all_chains( files, pixel ) # list of files corresponding to each chain at that pixel, e.g. 2224_1, 2224_2, 2224_3, 2222_4 pixel_chains.sort() n_chains = len(pixel_chains) if n_chains > 0: cbf_pixel = rwb.read_cbf_file( cur_dir + cbf_dir + pixel_chains[0].partition('_MCMC')[0] + '_' + pixel + '.cbf') cbr_chain_list = [] for pixel_chain in pixel_chains: print(pixel_chain) cbr_chain = rwb.read_cbr_file( pixel_chain, {'nopars': len(parnames) }) # cbr file for one chain cbr_chain_list.append( cbr_chain ) # list of separate cbrs for each chain, use for gelman rubin cbr_pixel = np.copy(cbr_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (cbr_pixel, cbr_chain), axis=0) # concatenate all chain cbrs #autil.plot_par_histograms(cbr_chain, parnames=parnames, savepath=cur_dir+plot_dir+'dists/', title=model+'_'+pixel_chain[:-3]+'png') flux_chain = rwb.readbinarymat( cur_dir + output_dir + 'fluxfile_' + pixel_chain[:-3] + 'bin', [ cbf_pixel['nodays'], autil.get_nofluxes_nopools_lma(model)[0] ]) pool_chain = rwb.readbinarymat( cur_dir + output_dir + 'poolfile_' + pixel_chain[:-3] + 'bin', [ cbf_pixel['nodays'] + 1, autil.get_nofluxes_nopools_lma(model)[1] ]) #autil.plot_flux_pool_timeseries(cbf_pixel, cbr_chain, flux_chain, pool_chain, autil.get_nofluxes_nopools_lma(model)[2], savepath=cur_dir+plot_dir+'timeseries/', title=model+'_'+pixel_chain[:-3]+'png') flux_pixel = np.copy(flux_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (flux_pixel, flux_chain), axis=0) # concatenate all chain flux outputs pool_pixel = np.copy(pool_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (pool_pixel, pool_chain), axis=0) # concatenate all chain pool outputs gr = autil.gelman_rubin( cbr_chain_list) # gelman rubin function from matt gr_thresh = 1.2 # below this value parameters are assumed to be convergent print('%i of %i parameters converged with GR<%.1f' % (sum(gr < gr_thresh), len(parnames), gr_thresh)) #autil.plot_par_histograms(cbr_pixel, parnames=parnames, savepath=cur_dir+plot_dir+'dists/', title=model+'_'+pixel_chain[:-6]+'.png') #autil.plot_flux_pool_timeseries(cbf_pixel, cbr_pixel, flux_pixel, pool_pixel, autil.get_nofluxes_nopools_lma(model)[2], savepath=cur_dir+plot_dir+'timeseries/', title=model+'_'+pixel_chain[:-6]+'.png') if (sum(gr < gr_thresh) / len(parnames) < .9 ): # don't include nonconvergent runs in analysis continue else: fwd_data = autil.get_output( var, model, flux_pixel, pool_pixel, cbr_pixel, autil.get_nofluxes_nopools_lma( model)[2]) # get forward data for var if len(fwd_data) > 0: if fwd_data.shape[1] > nsteps: fwd_data = fwd_data[:, :-1] fwd_data = autil.remove_outliers(fwd_data) # fill medians, upper bounds, and lower bounds meds[models.index(model), :] = np.nanmedian( fwd_data, axis=0) ub[models.index(model), :] = np.nanpercentile( fwd_data, 75, axis=0) lb[models.index(model), :] = np.nanpercentile( fwd_data, 25, axis=0) fwd_data = autil.remove_below_25_above_75( fwd_data ) # set values outside of 25th-75th range to nan Mp += np.nanvar( fwd_data, axis=0 ) # sum of intra-ensemble variance, only compute on 25th-75th n += 1 Ms = np.nanvar(meds, axis=0) # inter-median variance Mp = Mp / n if n != 0 else float('nan') Ms_div_sum = Ms / (Ms + Mp) Mp_div_sum = Mp / (Ms + Mp) partitioning.loc[pixel + '_' + var] = { 'Ms': np.nanmean(Ms_div_sum), 'Mp': np.nanmean(Mp_div_sum), 'n': n } Mp_pixels[pixels.index(pixel)] = np.nanmean(Mp_div_sum) print(partitioning.to_string()) partitioning.sort_index( axis=1).to_pickle(cur_dir + df_dir + 'summary' + assim_type + '_MCMC' + mcmc_id + '_' + date.today().strftime("%m%d%y") + '_' + str(len(models)) + '.pkl') return
def main(): ### set specifications model_id = sys.argv[1] run_type = 'ALL' mcmc_id = '119' n_iter = '40000000' ens_size = 500 assim_type = '_longadapted' ### set directories cur_dir = os.getcwd() + '/' cbf_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/cbf'+assim_type+'/' + model_id + '/' cbr_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/cbr'+assim_type+'/' + model_id + '/' output_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/output'+assim_type+'/' + model_id + '/' plot_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames(cur_dir + '../../misc/', model_id) # get list of cbfs os.chdir(cbf_dir) cbf_files = glob.glob('*.cbf') cbf_files.sort() os.chdir(cur_dir) # initialize lists of pixel names and rmses pixels_plot = [] nbe_rmse, lai_rmse = [], [] for cbf_file in cbf_files: print(cbf_file, cbf_files.index(cbf_file)) cbf_pixel = rwb.read_cbf_file(cbf_dir + cbf_file) pixel = cbf_file[-8:-4] cbr_files = glob.glob(cbr_dir + '*MCMC'+mcmc_id+'_'+n_iter+'_' + pixel + '_*.cbr') cbr_files = sorted(cbr_files, key=lambda x: int(x.partition(pixel+'_')[-1].partition('.cbr')[0])) # get all possible XX member combinations of cbr files n_chains_to_converge = 4 cbr_files_all_subsets = [list(i) for i in itertools.combinations(cbr_files, n_chains_to_converge)] continue_check = True for subset in cbr_files_all_subsets: if continue_check: # read parameters and compute gelman rubin cbr_chain_list = [] for cbr_file in subset: cbr_chain = rwb.read_cbr_file(cbr_file, {'nopars': len(parnames)}) cbr_chain = autil.modulus_Bday_Fday(cbr_chain, parnames) if np.shape(cbr_chain)[0]==ens_size: cbr_chain_list.append(cbr_chain) if len(cbr_chain_list)>1: gr = autil.gelman_rubin(cbr_chain_list) if sum(gr<1.2)/len(parnames)>=0.9: continue_check = False cbr_agg = np.vstack(cbr_chain_list) pixels_plot.append(pixel) best_subset = subset.copy() else: gr = np.nan # if there is a convergent subset, read fluxes and pools if not continue_check: convergent_chain_nums = [el.partition('.cbr')[0].partition(pixel)[-1][1:] for el in best_subset] convergent_files = [el.partition('.cbr')[0].partition(model_id+'/')[-1] for el in best_subset] flux_pixel = [] pool_pixel = [] for filename in convergent_files: flux_chain = rwb.readbinarymat(output_dir + 'fluxfile_' + filename+'.bin', [cbf_pixel['nodays'], autil.get_nofluxes_nopools_lma(model_id)[0]]) pool_chain = rwb.readbinarymat(output_dir + 'poolfile_' + filename+'.bin', [cbf_pixel['nodays']+1, autil.get_nofluxes_nopools_lma(model_id)[1]]) if (flux_chain.shape[0]==ens_size) & (pool_chain.shape[0]==ens_size): flux_pixel.append(flux_chain) pool_pixel.append(pool_chain) nbe_pred = autil.get_output('NBE', model_id, np.vstack(flux_pixel), np.vstack(pool_pixel), cbr_agg, autil.get_nofluxes_nopools_lma(model_id)[2]) lai_pred = autil.get_output('LAI', model_id, np.vstack(flux_pixel), np.vstack(pool_pixel), cbr_agg, autil.get_nofluxes_nopools_lma(model_id)[2]) nbe_obs, lai_obs = cbf_pixel['OBS']['NBE'], cbf_pixel['OBS']['LAI'] nbe_rmse.append(rmse_real_numbers_only(nbe_pred, nbe_obs)) lai_rmse.append(rmse_real_numbers_only(lai_pred, lai_obs)) print(rmse_real_numbers_only(nbe_pred, nbe_obs), rmse_real_numbers_only(lai_pred, lai_obs)) autil.plot_map(nrows=46, ncols=73, land_pixel_list=[file[-8:-4] for file in glob.glob(cbf_dir + '*.cbf')], pixel_value_list=pixels_plot, value_list=nbe_rmse, savepath=plot_dir+'maps/', savename='rmse_nbe_' + model_id + assim_type+ '_MCMC' + mcmc_id + '_' + n_iter) autil.plot_map(nrows=46, ncols=73, land_pixel_list=[file[-8:-4] for file in glob.glob(cbf_dir + '*.cbf')], pixel_value_list=pixels_plot, value_list=lai_rmse, savepath=plot_dir+'maps/', savename='rmse_lai_' + model_id + assim_type+ '_MCMC' + mcmc_id + '_' + n_iter) rmse_df = DataFrame(list(zip(pixels_plot, nbe_rmse, lai_rmse))) rmse_df.columns = ['pixel','nbe_rmse','lai_rmse'] rmse_df.to_pickle(cur_dir + '../../misc/rmse_' + model_id + assim_type+ '_MCMC' + mcmc_id + '_' + n_iter + '.pkl') ################################################################################################################################################################# # analyze regionally '''region_mask = Dataset(cur_dir + '../../misc/fourregion_maskarrays.nc') region_mask.set_auto_mask(False) regionmat, lat, lon = region_mask['4region'][:], region_mask['lat'][:], region_mask['lon'][:] lat[0] = -90 lat[-1] = 90 model_ids = ['811', '911'] rmse_dfs = [] for model_id in model_ids: rmse_df = read_pickle(cur_dir + '../../misc/rmse_' + model_id + assim_type+ '_MCMC' + mcmc_id + '_' + n_iter + '.pkl') rmse_df.columns = ['pixel','nbe_rmse','lai_rmse'] regions = [] for pixel in rmse_df[rmse_df.columns[0]].tolist(): pixlat, pixlon = rwb.rowcol_to_latlon(pixel) regions.append(regionmat[np.argwhere(lat==pixlat)[0][0], np.argwhere(lon==pixlon)[0][0]]) rmse_df.insert(loc=1, column='region', value=regions) rmse_dfs.append(rmse_df) print(rmse_dfs[0].groupby('region')['nbe_rmse'].mean(), rmse_dfs[0].groupby('region')['lai_rmse'].mean()) print(rmse_dfs[1].groupby('region')['nbe_rmse'].mean(), rmse_dfs[1].groupby('region')['lai_rmse'].mean())''' return
def main(): # set run information to read model_id = sys.argv[1] mcmc_id = sys.argv[2] # 119 for normal, 3 for DEMCMC n_iter = sys.argv[3] nbe_optimization = sys.argv[4] # OFF OR ON ens_size = 500 assim_type = '_p25adapted' suffix = '_clipped_' if mcmc_id == '119': frac_save_out = str(int(int(n_iter) / 500)) n_chains_agg = 4 elif mcmc_id == '3': frac_save_out = str(int( int(n_iter) / 500 * 100)) # n_iterations/ frac_save_out * 100 will be ensemble size n_chains_agg = 2 # set directories cur_dir = os.getcwd() + '/' misc_dir = cur_dir + '/../../misc/' cbf_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '/' + model_id + '/' cbr_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '/' + model_id + '/' cbr_ef_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '_ef/' + model_id + '/' plot_dir = cur_dir + '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames('../../misc/', model_id) # choose which features to use include_soilgrids = True include_poolobs = True include_gl_fracs = False # choose which model formulation to use train_full_ensemble = False rescale = True include_interactions = False include_squares = False include_all_polys = False do_feature_selection = False do_PLS = True n_features_select = int(sys.argv[5]) write_to_csv = False # choose which tasks to run opt_feature_select = True submit_ic_opt = True submit_forward = False ############################################################################################################################################ ############################# develop and train EF models ################################################################################### # load list of land pixels pixels = list(set([file[-8:-4] for file in glob.glob(cbf_dir + '*.cbf')])) pixels.sort() # load list of cbrs cbr_files = glob.glob(cbr_dir + '*MCMC' + mcmc_id + '_' + n_iter + '_*.cbr') # load bestchains for cbr_files conv_chains = read_pickle(cbr_dir + model_id + assim_type + '_ALL' + '_MCMC' + mcmc_id + '_' + n_iter + '_best_subset.pkl') conv_chains.columns = ['pixel', 'bestchains', 'conv'] #rename columns for easier access ic_inds = autil.get_inds_ic( model_id) # get indices of initial condition parameters # load globcover csv for land cover regression comparison gl_fracs = read_csv(misc_dir + 'globcover_fracs.csv', header=0) n_features_gl = len(gl_fracs.columns) - 1 suffix_gl = 'gl_' # get number of predictors n_features = ( rwb.read_cbf_file(glob.glob(cbf_dir + '*.cbf')[0])['nomet'] - 3 ) * 2 # remove 3 corresponding to day number and CO2, multiply by 2 (mean and sd) if do_PLS: suffix += 'PLS_' if include_soilgrids: soilgrids = read_csv('../../misc/soilgrids_defined_pixels_manual.csv', header=0) n_soilgrids = len(soilgrids.columns) - 1 n_features += n_soilgrids suffix += 'soilgrids_' if include_poolobs: n_poolobs = 4 n_features += n_poolobs suffix += 'poolobs_' if include_gl_fracs: n_features += n_features_gl suffix += suffix_gl # fill X and Y n_regr_models = len(parnames) X = np.ones( (len(pixels), n_features)) * np.nan # shape n_samples, n_features y = np.ones( (n_regr_models, len(pixels))) * np.nan # shape n_pars, n_samples y_full_ens = np.ones((ens_size, n_regr_models, len(pixels))) * np.nan # shape n_pars, n_samples X_gl = np.ones((len(pixels), n_features_gl)) * np.nan y_gl = np.ones((n_regr_models, len(pixels))) * np.nan for pixel in pixels: if (len( glob.glob(cbr_dir + '*MCMC' + mcmc_id + '_' + n_iter + '_' + pixel + '*.cbr')) > 0) & (pixel in conv_chains['pixel'].values): if conv_chains.loc[conv_chains['pixel'] == pixel]['conv'].values[0] == 0: continue else: ind = pixels.index(pixel) print(pixel) # get met cbf_file = glob.glob(cbf_dir + '*' + pixel + '.cbf')[0] met = rwb.read_cbf_file(cbf_file)['MET'] met = met[:, [1, 2, 3, 6, 7, 8]] # don't use index 0, 5 (day numbers) or 4 (Co2) X_end = met.shape[1] * 2 X[ind, :X_end] = np.concatenate( (np.nanmean(met, axis=0), np.nanstd(met, axis=0))) #X[ind,:met.shape[1]*12] = fill_X_met_12mo(X[ind,:met.shape[1]*12], met)#np.nanmean(met, axis=0) # append to X if include_soil_canopy_vars if include_soilgrids: if (int(pixel) in soilgrids['pixel'].values): X[ind, X_end:(X_end + n_soilgrids)] = soilgrids[ soilgrids['pixel'] == int(pixel)].values[0][1:] X_end = X_end + n_soilgrids if include_poolobs: lai, agb, som = rwb.read_cbf_file( cbf_file)['OBS']['LAI'], rwb.read_cbf_file( cbf_file)['OBS']['ABGB'], rwb.read_cbf_file( cbf_file)['OBS']['SOM'] if (len(lai) > 0) & (len(agb) > 0) & (len(som) > 0): X[ind, X_end:(X_end + n_poolobs)] = np.array([ np.nanmean(lai[lai > 0]), np.nanstd(lai[lai > 0]), np.nanmean(agb[agb > 0]), np.nanmean(som[som > 0]) ]) X_end = X_end + n_poolobs if include_gl_fracs: if (int(pixel) in gl_fracs['pixel'].values): X[ind, X_end:(X_end + n_features_gl)] = gl_fracs.loc[ gl_fracs['pixel'] == int(pixel)].values[0][1:] X_end = X_end + n_features_gl # fill globcover X if int(pixel) in gl_fracs['pixel'].values: X_gl[ind, :] = gl_fracs.loc[gl_fracs['pixel'] == int( pixel)].values[0][1:] # get parameter information # get pixel's convergent chain numbers best_chains = conv_chains.loc[ conv_chains['pixel'] == pixel]['bestchains'].values[0][1:] print(best_chains) # aggregate bestchains from optimal posteriors cbr_data = [] for chain in best_chains: file = [ i for i in cbr_files if pixel + '_' + chain + '.cbr' in i ][0] cbr_data.append( autil.modulus_Bday_Fday( rwb.read_cbr_file(file, {'nopars': len(parnames)}), parnames)) #cbr_data.append(rwb.read_cbr_file(file, {'nopars': len(parnames)})) cbr_data = np.vstack(cbr_data) y[:, ind] = np.nanmedian(cbr_data, axis=0) y_gl[:, ind] = np.nanmedian(cbr_data, axis=0) indices = np.random.choice( cbr_data.shape[0], ens_size, replace=False) # only take a subset of cbr rows y_full_ens[:, :, ind] = cbr_data[ indices, :] #reshape_cbr(cbr_data, ens_size*n_chains_agg) if not train_full_ensemble: f_bic = open( misc_dir + 'env_filter_manual/fs/bic_fs' + suffix.partition('fs')[0] + model_id + '_MCMC' + mcmc_id + '_' + n_iter + assim_type + '.csv', 'a') w_bic = csv.writer(f_bic) # EF regressions reg_test_preds_list, card_test_preds_list, reg_train_preds_list, card_train_preds_list, pixels_r, suffix, k = run_regressions( X, y, pixels, rescale, include_interactions, include_squares, include_all_polys, do_feature_selection, do_PLS, write_to_csv, w_bic, n_features_select, suffix, ens_size, n_regr_models, n_features) f_bic.close() # globcover comparison '''gl_reg_test_preds_list, gl_card_test_preds_list, gl_reg_train_preds_list, gl_card_train_preds_list, gl_pixels_r, gl_suffix, gl_k = run_regressions(X_gl, y_gl, pixels, rescale, False, False, False, False, False, False, w_bic, n_features_select, suffix_gl, ens_size, n_regr_models, n_features_gl)''' else: suffix += 'full_ens_' icount = 0 for i in sample(range(y_full_ens.shape[0]), 100): print(icount) rtest, ctest, rtrain, ctrain, pixels_r, suffix, k = run_regressions( X, y_full_ens[i, :, :], pixels, rescale, include_interactions, include_squares, include_all_polys, do_feature_selection, n_features_select, suffix, ens_size, n_regr_models, n_features) reg_test_preds_list = [np.nanmedian( ri, axis=0) for ri in rtest] if icount == 0 else [ np.vstack((np.nanmedian(ri, axis=0), rfull)) for ri, rfull in zip(rtest, reg_test_preds_list) ] card_test_preds_list = np.copy(ctest) if icount == 0 else [ np.vstack((ci, cfull)) for ci, cfull in zip(ctest, card_test_preds_list) ] reg_train_preds_list = [np.nanmedian( ri, axis=0) for ri in rtrain] if icount == 0 else [ np.vstack((np.nanmedian(ri, axis=0), rfull)) for ri, rfull in zip(rtrain, reg_train_preds_list) ] card_train_preds_list = np.copy(ctrain) if icount == 0 else [ np.vstack((ci, cfull)) for ci, cfull in zip(ctrain, card_train_preds_list) ] icount += 1 # fill csv f_test = open( misc_dir + 'env_filter_manual/fs/fs_test' + suffix.partition('fs')[0] + model_id + '_MCMC' + mcmc_id + '_' + n_iter + assim_type + '.csv', 'a') wr_test = csv.writer(f_test) f_train = open( misc_dir + 'env_filter_manual/fs/fs_train' + suffix.partition('fs')[0] + model_id + '_MCMC' + mcmc_id + '_' + n_iter + assim_type + '.csv', 'a') wr_train = csv.writer(f_train) f_test_preds = open( misc_dir + 'env_filter_manual/par_preds/par_preds_test' + suffix + model_id + '_MCMC' + mcmc_id + '_' + n_iter + assim_type + '.csv', 'a') wr_test_preds = csv.writer(f_test_preds) f_train_preds = open( misc_dir + 'env_filter_manual/par_preds/par_preds_train' + suffix + model_id + '_MCMC' + mcmc_id + '_' + n_iter + assim_type + '.csv', 'a') wr_train_preds = csv.writer(f_train_preds) print('TEST:') #plot_scatter_test_pred(card_test_preds_list, reg_test_preds_list, k, pixels_r, parnames, wr_test, wr_test_preds, plot_dir+'env_filter/', 'par_preds_test'+suffix+model_id+'_MCMC'+mcmc_id+'_'+n_iter+assim_type, train_full_ensemble, write_to_csv) #plot_scatter_test_pred(gl_card_test_preds_list, gl_reg_test_preds_list, gl_k, gl_pixels_r, parnames, wr_test, wr_test_preds, plot_dir+'env_filter/', 'par_preds_test'+gl_suffix+model_id+'_MCMC'+mcmc_id+'_'+n_iter+assim_type, train_full_ensemble, write_to_csv) print('. . . . . \n\nTRAIN:') #plot_scatter_test_pred(card_train_preds_list, reg_train_preds_list, k, pixels_r, parnames, wr_train, wr_train_preds, plot_dir+'env_filter/', 'par_preds_train'+suffix+model_id+'_MCMC'+mcmc_id+'_'+n_iter+assim_type, train_full_ensemble, write_to_csv) #plot_scatter_test_pred(gl_card_train_preds_list, gl_reg_train_preds_list, gl_k, gl_pixels_r, parnames, wr_train, wr_train_preds, plot_dir+'env_filter/', 'par_preds_train'+gl_suffix+model_id+'_MCMC'+mcmc_id+'_'+n_iter+assim_type, train_full_ensemble, write_to_csv) f_test.close() f_train.close() f_test_preds.close() f_train_preds.close() ############################################################################################################################################ ################################### find optimal number of features for each parameter ##################################################### if opt_feature_select: test_rmse = read_csv(misc_dir + 'env_filter_manual/fs/fs_test' + suffix.partition('fs')[0] + model_id + '_MCMC' + mcmc_id + '_' + n_iter + assim_type + '.csv', header=None) test_rmse.columns = [ item for sublist in [['n_features_select'], parnames] for item in sublist ] test_rmse.sort_values('n_features_select') train_rmse = read_csv(misc_dir + 'env_filter_manual/fs/fs_train' + suffix.partition('fs')[0] + model_id + '_MCMC' + mcmc_id + '_' + n_iter + assim_type + '.csv', header=None) train_rmse.columns = [ item for sublist in [['n_features_select'], parnames] for item in sublist ] train_rmse.sort_values('n_features_select') x = test_rmse['n_features_select'].values opt_fs = plot_train_test(x, train_rmse, test_rmse, parnames, savepath=plot_dir + 'train_test/', savename=model_id + '_MCMC' + mcmc_id + suffix.partition('fs')[0], norm=False) opt_fs = plot_train_test(x, train_rmse, test_rmse, parnames, savepath=plot_dir + 'train_test/', savename=model_id + '_MCMC' + mcmc_id + suffix.partition('fs')[0], norm=True) print(opt_fs) '''bic_data = read_csv(misc_dir +'env_filter_manual/fs/bic_fs_soilgrids_poolobs_'+model_id+'_MCMC'+mcmc_id+'_'+n_iter+assim_type + '.csv', header=None) bic_data.columns = [item for sublist in [['n_features_select'],parnames] for item in sublist] bic_data.columns.sort_values('n_features_select') x = bic_data['n_features_select'].values opt_fs = plot_train_test(x, bic_data, bic_data*np.nan, parnames, savepath=plot_dir+'train_test/', savename='bic_'+model_id+'_MCMC'+mcmc_id+suffix.partition('fs')[0]) print(opt_fs)''' ############################################################################################################################################ ################################### copy cbfs and substitute pars for IC optimization ###################################################### # set directories for CARDAMOM runs mdf_dir = '../code/CARDAMOM_2.1.6c/C/projects/CARDAMOM_MDF/' if nbe_optimization == 'OFF' else '../code/CARDAMOM_Uma_2.1.6c-master/C/projects/CARDAMOM_MDF/' runmodel_dir = '../code/CARDAMOM_2.1.6c/C/projects/CARDAMOM_GENERAL/' if nbe_optimization == 'OFF' else '../code/CARDAMOM_Uma_2.1.6c-master/C/projects/CARDAMOM_GENERAL/' cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '/' + model_id + '/' cbf_ef_ic_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '_ef_ic/' + model_id + '/' cbr_ef_dir = '../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '_ef/' + model_id + '/' output_dir = '../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '/' + model_id + '/' output_ef_dir = '../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '_ef/' + model_id + '/' # select which pixels to submit os.chdir(cbf_dir) cbf_files = glob.glob('*.cbf') cbf_files.sort() os.chdir(cur_dir + '/../') if submit_ic_opt: txt_filename = 'ef_ic_assim_list_' + model_id + assim_type + '_MCMC' + mcmc_id + '_' + n_iter + '.txt' txt_file = open(txt_filename, 'w') for cbf_file in cbf_files: print(cbf_file) cbf_data = rwb.read_cbf_file(cbf_dir + cbf_file) cbf_pixel = cbf_file[-8:-4] if cbf_pixel in pixels_r: parpriors = np.concatenate( (retrieve_preds(cbf_pixel, opt_fs, suffix, misc_dir + 'env_filter_manual/par_preds/'), np.ones(50 - len(parnames)) * -9999.)) parpriorunc = np.concatenate( (np.ones(len(parnames)) * 1.001, np.ones(50 - len(parnames)) * -9999.)) # except ICs for ic_ind in ic_inds: parpriors[ic_ind] = -9999. parpriorunc[ic_ind] = -9999. # except NBE unc if nbe_optimization == 'ON': parpriors[len(parnames) - 1] = -9999. parpriorunc[len(parnames) - 1] = -9999. cbf_data['PARPRIORS'] = parpriors.reshape(-1, 1) cbf_data['PARPRIORUNC'] = parpriorunc.reshape(-1, 1) fp = cbf_file[:-9] + suffix.partition('fs')[0] + cbf_pixel fa = cbf_file[: -9] + '_MCMC' + mcmc_id + '_' + n_iter + suffix.partition( 'fs')[0] + 'assim_' + cbf_pixel rwb.CARDAMOM_WRITE_BINARY_FILEFORMAT( cbf_data, cbf_ef_ic_dir + fp + '.cbf') txt_file.write( '%sCARDAMOM_MDF.exe %s%s %s%s %s 0 %s 0.001 %s 1000' % (mdf_dir, cbf_ef_ic_dir[3:], fp + '.cbf', cbr_ef_dir, fa + '.cbr', n_iter, frac_save_out, mcmc_id)) txt_file.write('\n') txt_file.close() sh_file = open(txt_filename[:-3] + 'sh', 'w') autil.fill_in_sh(sh_file, array_size=len(pixels_r), n_hours=6, txt_file=txt_filename, combined=False) if submit_forward: txt_filename = 'ef_ic_forward_list_' + model_id + assim_type + '_MCMC' + mcmc_id + '_' + n_iter + '.txt' txt_file = open(txt_filename, 'w') for cbf_file in cbf_files: print(cbf_file) cbf_data = rwb.read_cbf_file(cbf_dir + cbf_file) cbf_pixel = cbf_file[-8:-4] if cbf_pixel in pixels_r: fa = cbf_file[: -9] + '_MCMC' + mcmc_id + '_' + n_iter + suffix.partition( 'fs')[0] + 'assim_' + cbf_pixel cbr_assim = rwb.read_cbr_file( glob.glob(cbr_ef_dir + fa + '.cbr')[0], {'nopars': len(parnames)}) ff = cbf_file[: -9] + '_MCMC' + mcmc_id + '_' + n_iter + suffix.partition( 'fs')[0] + 'forward_' + cbf_pixel cbr_forward = retrieve_preds( cbf_pixel, opt_fs, suffix, misc_dir + 'env_filter_manual/par_preds/') for ic_ind in ic_inds: cbr_forward[ic_ind] = np.nanmedian(cbr_assim[:, ic_ind]) cbr_forward = cbr_forward.reshape(1, len(parnames)) rwb.write_cbr_file(cbr_forward, cbr_ef_dir + ff + '.cbr') txt_file.write( '%sCARDAMOM_RUN_MODEL.exe %s%s %s%s %s%s %s%s %s%s %s%s' % (runmodel_dir, cbf_dir[3:], cbf_file, cbr_ef_dir, ff + '.cbr', output_ef_dir, 'fluxfile_' + ff + '.bin', output_ef_dir, 'poolfile_' + ff + '.bin', output_ef_dir, 'edcdfile_' + ff + '.bin', output_ef_dir, 'probfile_' + ff + '.bin')) txt_file.write('\n') txt_file.close() sh_file = open(txt_filename[:-3] + 'sh', 'w') autil.fill_in_sh(sh_file, array_size=len(pixels_r), n_hours=1, txt_file=txt_filename, combined=False) return
def main(): model_id = sys.argv[1] run_type = sys.argv[2] # ALL or SUBSET mcmc_id = sys.argv[3] # 119 for normal, 3 for DEMCMC n_iter = sys.argv[4] var_to_plot = sys.argv[5] # GR, a flux or pool, or PARXX ens_size = 500 assim_type = '_longadapted' cur_dir = os.getcwd() + '/' if 'scripts' not in cur_dir: cur_dir = cur_dir + 'scripts/' cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf'+assim_type+'/' + model_id + '/' cbr_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr'+assim_type+'/' + model_id + '/' output_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output'+assim_type+'/' + model_id + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames(cur_dir + '../../misc/', model_id) os.chdir(cbr_dir) files = glob.glob('*MCMC'+mcmc_id+'_'+n_iter+'_*.cbr') pixel = sys.argv[6] print(pixel) pixel_chains = autil.find_all_chains(files, pixel) pixel_chains.sort() # filenames print(pixel_chains) cbf_pixel = rwb.read_cbf_file(cur_dir + cbf_dir + pixel_chains[0].partition('_MCMC')[0]+'_'+pixel+'.cbf') cbr_chain_list = [] for pixel_chain in pixel_chains: print(pixel_chain) cbr_chain = rwb.read_cbr_file(pixel_chain, {'nopars': len(parnames)}) cbr_pixel = np.copy(cbr_chain) if pixel_chains.index(pixel_chain)==0 else np.concatenate((cbr_pixel, cbr_chain), axis=0) flux_chain = rwb.readbinarymat(cur_dir + output_dir + 'fluxfile_' + pixel_chain[:-3]+'bin', [cbf_pixel['nodays'], autil.get_nofluxes_nopools_lma(model_id)[0]]) pool_chain = rwb.readbinarymat(cur_dir + output_dir + 'poolfile_' + pixel_chain[:-3]+'bin', [cbf_pixel['nodays']+1, autil.get_nofluxes_nopools_lma(model_id)[1]]) flux_pixel = np.copy(flux_chain) if pixel_chains.index(pixel_chain)==0 else np.concatenate((flux_pixel, flux_chain), axis=0) pool_pixel = np.copy(pool_chain) if pixel_chains.index(pixel_chain)==0 else np.concatenate((pool_pixel, pool_chain), axis=0) if np.shape(cbr_chain)[0]==ens_size: cbr_chain_list.append(cbr_chain) print(np.shape(cbr_chain)) ### COMPUTE GELMAN RUBIN if len(cbr_chain_list)>1: gr = autil.gelman_rubin(cbr_chain_list) gr_pixel = sum(gr<1.2)/len(parnames) else: gr_pixel = -9999. ### DETERMINE DATA TO WRITE TO FILE if var_to_plot == 'GR': data = np.copy(gr_pixel) elif 'PAR' in var_to_plot: parnum = int(var_to_plot.partition('PAR')[-1]) if gr_pixel>0.9: data = np.nanmedian(cbr_pixel[:,parnum-1]) else: data = -9999. else: if gr_pixel>0.9: data = np.nanmean(np.nanmedian(autil.get_output(var_to_plot, model_id, flux_pixel, pool_pixel, cbr_pixel, autil.get_nofluxes_nopools_lma(model_id)[2]), axis=0)) else: data = -9999. with open(cur_dir + '../../misc/' + model_id + '_' + pixel_chains[0].partition('_MCMC')[0] + '_MCMC' + mcmc_id + '_' + n_iter + '_' + var_to_plot + '.csv','a') as f: writer = csv.writer(f) new_row = [pixel, data] assert len(new_row)==2 writer.writerow(new_row) return
def main(): model_id = sys.argv[1] run_type = sys.argv[2] # ALL or SUBSET mcmc_id = sys.argv[3] # 119 for normal, 3 for DEMCMC nbe_optimization = sys.argv[4] # 'OFF' or 'ON' assim_type = '_p25adapted' cur_dir = os.getcwd() + '/' mdf_dir = '../code/CARDAMOM_2.1.6c/C/projects/CARDAMOM_MDF/' if nbe_optimization == 'OFF' else '../code/CARDAMOM_Uma_2.1.6c-master/C/projects/CARDAMOM_MDF/' runmodel_dir = '../code/CARDAMOM_2.1.6c/C/projects/CARDAMOM_GENERAL/' if nbe_optimization == 'OFF' else '../code/CARDAMOM_Uma_2.1.6c-master/C/projects/CARDAMOM_GENERAL/' cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '/' + model_id + '/' cbr_dir = '../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '/' + model_id + '/' output_dir = '../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '/' + model_id + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames('../../misc/', model_id) n_iterations = sys.argv[5] runtime_assim = int(sys.argv[6]) resubmit_num = sys.argv[7] n_chains_resubmit = 4 ens_size = 500 if mcmc_id == '119': frac_save_out = str(int(int(n_iterations) / 500)) elif mcmc_id == '3': frac_save_out = str(int( int(n_iterations) / 500 * 100)) # n_iterations/ frac_save_out * 100 will be ensemble size # select which pixels to submit os.chdir(cbf_dir) if run_type == 'ALL': cbf_files = glob.glob('*.cbf') elif run_type == 'SUBSET_RANDOM': cbf_files = sample(glob.glob('*.cbf'), 10) elif run_type == 'SUBSET_INPUT': cbf_files = select_cbf_files(glob.glob('*.cbf'), [ '3809', '3524', '2224', '4170', '1945', '3813', '4054', '3264', '1271', '3457' ]) os.chdir(cur_dir + '/../') cbf_files.sort() # create one combined submission file with all assimilation and forward commands for each pixel's chain on one line txt_filename = 'combined_assim_forward_list_' + model_id + '_' + run_type + assim_type + '_MCMC' + mcmc_id + '_' + n_iterations + '_resubmit' + resubmit_num + '.txt' txt_file = open(txt_filename, 'w') resubmit_count = 0 gr_pixels = np.zeros( len(cbf_files)) * np.nan # list of GR for each pixel, for mapping pixels = [] best_subset = [] conv_bool_lst = [] for cbf_file in cbf_files: best_subset_pixel = [] resubmit = False print(cbf_file, cbf_files.index(cbf_file)) cbf_pixel = rwb.read_cbf_file(cur_dir + cbf_dir + cbf_file) pixel = cbf_file[-8:-4] cbr_files = glob.glob(cur_dir + '../' + cbr_dir + '*MCMC' + mcmc_id + '_' + n_iterations + '_' + pixel + '_*.cbr') cbr_files = sorted( cbr_files, key=lambda x: int( x.partition(pixel + '_')[-1].partition('.cbr')[0])) if len(cbr_files) >= n_chains_resubmit: pixels.append(pixel) #cbr_files = cbr_files[:16] ############ TEMP if len(cbr_files) > 0: end_chain = int( cbr_files[-1].partition(pixel + '_')[-1].partition('.cbr')[0]) #print('ENDCHAIN: '+str(end_chain)) else: end_chain = 0 resubmit = True # get all possible XX member combinations of cbr files n_chains_to_converge = n_chains_resubmit cbr_files_all_subsets = [ list(i) for i in itertools.combinations(cbr_files, n_chains_to_converge) ] continue_check = True for subset in cbr_files_all_subsets: if continue_check: # read parameters and compute gelman rubin cbr_chain_list = [] chain_nums = ['0'] for cbr_file in subset: #print(cbr_file[-10:-4]) cbr_chain = rwb.read_cbr_file(cbr_file, {'nopars': len(parnames)}) cbr_chain = autil.modulus_Bday_Fday(cbr_chain, parnames) chain_nums.append( cbr_file.partition('.cbr')[0].partition(pixel + '_') [-1]) # append chain number if np.shape(cbr_chain)[0] == ens_size: cbr_chain_list.append(cbr_chain) #print(np.shape(cbr_chain)) else: print('incorrect ensemble size)') resubmit = True if len(cbr_chain_list) > 1: gr = autil.gelman_rubin(cbr_chain_list) #print(gr) print( '%i/%i' % (sum(gr < 1.2), len(parnames)) ) #print('%i of %i parameters converged' % (sum(gr<1.2), len(parnames))) if (np.isnan(gr_pixels[cbf_files.index(cbf_file)])): gr_pixels[cbf_files.index(cbf_file)] = sum( gr < 1.2) / len(parnames) #if len(cbr_files_all_subsets)==1: best_subset_pixel.append(chain_nums) if sum(gr < 1.2) / len(parnames) < 0.9: #print('gr too low') resubmit = True if (sum(gr < 1.2) / len(parnames) >= gr_pixels[cbf_files.index(cbf_file)]): gr_pixels[cbf_files.index(cbf_file)] = sum( gr < 1.2) / len(parnames) best_subset_pixel.append(chain_nums) conv_bool = 0 else: resubmit = False continue_check = False gr_pixels[cbf_files.index(cbf_file)] = sum( gr < 1.2) / len(parnames) best_subset_pixel.append(chain_nums) conv_bool = 1 else: gr = np.nan print('gr undefined') best_subset_pixel.append(chain_nums) conv_bool = 0 resubmit = True if len(best_subset_pixel) > 0: best_subset.append(best_subset_pixel[-1]) conv_bool_lst.append(conv_bool) # write into text file if pixel needs to be resubmitted if resubmit: first_resubmit_chain = end_chain + 1 last_resubmit_chain = end_chain + n_chains_resubmit for chain in range(first_resubmit_chain, last_resubmit_chain + 1): c = '_' + str(chain) txt_file.write( '%sCARDAMOM_MDF.exe %s%s %s%s %s 0 %s 0.001 %s 1000' % (mdf_dir, cbf_dir[3:], cbf_file, cbr_dir, cbf_file[:-8] + 'MCMC' + mcmc_id + '_' + n_iterations + '_' + cbf_file[-8:-4] + c + '.cbr', n_iterations, frac_save_out, mcmc_id)) txt_file.write( ' && %sCARDAMOM_RUN_MODEL.exe %s%s %s%s %s%s %s%s %s%s %s%s' % (runmodel_dir, cbf_dir[3:], cbf_file, cbr_dir, cbf_file[:-8] + 'MCMC' + mcmc_id + '_' + n_iterations + '_' + cbf_file[-8:-4] + c + '.cbr', output_dir, 'fluxfile_' + cbf_file[:-8] + 'MCMC' + mcmc_id + '_' + n_iterations + '_' + cbf_file[-8:-4] + c + '.bin', output_dir, 'poolfile_' + cbf_file[:-8] + 'MCMC' + mcmc_id + '_' + n_iterations + '_' + cbf_file[-8:-4] + c + '.bin', output_dir, 'edcdfile_' + cbf_file[:-8] + 'MCMC' + mcmc_id + '_' + n_iterations + '_' + cbf_file[-8:-4] + c + '.bin', output_dir, 'probfile_' + cbf_file[:-8] + 'MCMC' + mcmc_id + '_' + n_iterations + '_' + cbf_file[-8:-4] + c + '.bin')) txt_file.write( ' && ') if chain < last_resubmit_chain else txt_file.write( '\n') resubmit_count += 1 txt_file.close() sh_file = open(txt_filename[:-3] + 'sh', 'w') autil.fill_in_sh(sh_file, array_size=resubmit_count, n_hours=runtime_assim, txt_file=txt_filename, combined=True) autil.plot_map(nrows=46, ncols=73, land_pixel_list=pixels, pixel_value_list=pixels, value_list=gr_pixels * 100, savepath=cur_dir + plot_dir + 'maps/', savename='gr_' + model_id + assim_type + '_' + run_type + '_MCMC' + mcmc_id + '_' + n_iterations + '_resubmit' + resubmit_num) #print(pixels, best_subset, conv_bool_lst) print(len(pixels), len(best_subset), len(conv_bool_lst)) DataFrame(list( zip(pixels, best_subset, conv_bool_lst))).to_pickle(cur_dir + '../' + cbr_dir + model_id + assim_type + '_' + run_type + '_MCMC' + mcmc_id + '_' + n_iterations + '_best_subset.pkl') return
def main(): # get specifications for run to read model_ids = ['811','811'] assim_type = '_p25adapted' ens_size = 500 mcmc_ids = ['119','3'] n_iters = ['40000000','1000000'] # set directories cur_dir = os.getcwd() + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' n_pixels = 928 demcmc_pred, mcmc_pred = [np.ones(34)*np.nan for i in range(n_pixels)], [np.ones(34)*np.nan for i in range(n_pixels)] # run through pixels for mcmc_id, n_iter, model_id in zip(mcmc_ids, n_iters, model_ids): # get list of directories cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf'+assim_type+'/' + model_id + '/' cbr_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr'+assim_type+'/' + model_id + '/' output_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output'+assim_type+'/' + model_id + '/' parnames = autil.get_parnames('../../misc/', model_id) # get list of pixels pixels = [cbf[-8:-4] for cbf in glob.glob(cbf_dir + '*.cbf')] pixels.sort() # get best chains conv_chains = read_pickle(cbr_dir + model_id + assim_type + '_ALL' + '_MCMC'+mcmc_id + '_'+n_iter+'_best_subset.pkl') conv_chains.columns = ['pixel','bestchains','conv'] #rename columns for easier access for pixel in pixels: ind = pixels.index(pixel) if (len(glob.glob(cbr_dir + '*MCMC'+mcmc_id+'_'+n_iter+'_' + pixel + '*.cbr'))>0) & (pixel in conv_chains['pixel'].values): # read cbf file for that pixel cbf_pixel = rwb.read_cbf_file(glob.glob(cbf_dir + '*_' + pixel+'.cbf')[0]) # grab cbrs corresponding to that pixel, MCMCID and number of iterations cbr_files = glob.glob(cbr_dir + '*MCMC'+mcmc_id+'_' + n_iter + '_'+ pixel+'*.cbr') cbr_files.sort() # run through cbrs best_chains = conv_chains.loc[conv_chains['pixel']==pixel]['bestchains'].values[0][1:] print(pixel, best_chains) cbr_data = [] conv = conv_chains.loc[conv_chains['pixel']==pixel]['conv'].values[0] if conv==1: # aggregate bestchains from optimal posteriors for chain in best_chains: file = [i for i in cbr_files if pixel+'_'+chain+'.cbr' in i][0] cbr_data.append(autil.modulus_Bday_Fday(rwb.read_cbr_file(file, {'nopars': len(parnames)}), parnames)) cbr_data = np.vstack(cbr_data) else: cbr_data = np.ones((ens_size, len(parnames)))*np.nan if mcmc_id=='119': mcmc_pred[ind] = np.nanmedian(cbr_data, axis=0) elif mcmc_id=='3': demcmc_pred[ind] = np.nanmedian(cbr_data, axis=0) plot_scatter_compare(demcmc_pred, mcmc_pred, parnames, cur_dir+plot_dir+'demcmc_mcmc/', 'par_compare_811') return
def main(): model_id = sys.argv[1] mcmc_id = sys.argv[2] # 119 for normal, 3 for DEMCMC n_iter = sys.argv[3] ens_size = 500 assim_type = '_p25adapted' # EF comparison ef_spec = 'clipped_PLS_soilgrids_poolobs_rescaled_forward' # directories cur_dir = os.getcwd() + '/' cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '/' + model_id + '/' cbr_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '/' + model_id + '/' cbr_ef_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '_ef/' + model_id + '/' output_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '/' + model_id + '/' output_ef_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '_ef/' + model_id + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames('../../misc/', model_id) # get cbfs to run through os.chdir(cbf_dir) cbf_files = glob.glob('*.cbf') cbf_files.sort() os.chdir(cur_dir + '/../') opt_preds = np.zeros((len(cbf_files), len(parnames))) * np.nan ef_preds = np.zeros((len(cbf_files), len(parnames))) * np.nan for cbf_file in cbf_files: pixel = cbf_file[-8:-4] print(pixel) pixel_chains_opt = autil.find_all_chains( glob.glob(cbr_dir + '*_MCMC' + mcmc_id + '_' + n_iter + '_' + pixel + '*.cbr'), pixel) pixel_chains_opt.sort() # filenames pixel_chains_ef = autil.find_all_chains( glob.glob(cbr_ef_dir + '*_MCMC' + mcmc_id + '_' + n_iter + '_' + ef_spec + '_' + pixel + '.cbr'), pixel) pixel_chains_ef.sort() for pc_opt in pixel_chains_opt: cbr_chain_opt = rwb.read_cbr_file(pc_opt, {'nopars': len(parnames)}) cbr_chain_opt = autil.modulus_Bday_Fday(cbr_chain_opt, parnames) cbr_pixel_opt = np.copy(cbr_chain_opt) if pixel_chains_opt.index( pc_opt) == 0 else np.concatenate( (cbr_pixel_opt, cbr_chain_opt), axis=0) for pc_ef in pixel_chains_ef: cbr_chain_ef = rwb.read_cbr_file(pc_ef, {'nopars': len(parnames)}) cbr_chain_ef = autil.modulus_Bday_Fday(cbr_chain_ef, parnames) cbr_pixel_ef = np.copy(cbr_chain_ef) if pixel_chains_ef.index( pc_ef) == 0 else np.concatenate( (cbr_pixel_ef, cbr_chain_ef), axis=0) opt_preds[cbf_files.index(cbf_file), :] = np.nanmedian(cbr_pixel_opt, axis=0) ef_preds[cbf_files.index(cbf_file), :] = np.nanmedian(cbr_pixel_ef, axis=0) plot_scatter_compare(ef_preds, opt_preds, parnames, plot_dir + 'scatters/', model_id + '_MCMC' + mcmc_id + '_' + n_iter) return
def main(): model_id_start = sys.argv[1] run_type = sys.argv[2] # ALL or SUBSET metric = sys.argv[3] # spread or RMSE assim_type = '_p25adapted' compare_between = sys.argv[4] # MCMCID or MODEL or NBEUNC n_iters = [ ['40000000'], ['40000000'] ] #['500000','1000000','2500000','5000000','10000000'],['40000000']]#[['100000', '250000', '500000', '1000000', '1750000', '2500000', '5000000'], ['100000', '250000', '500000', '1000000', '5000000', '10000000', '25000000','50000000']] vrs = [ 'NBE', 'cumNBE', 'LAI', 'GPP', 'Reco', 'Rauto', 'Rhet', 'lit', 'root', 'som', 'wood' ] pixels = [ '3809', '3524', '2224', '4170', '1945', '3813', '4054', '3264', '1271', '3457' ] cur_dir = os.getcwd() + '/' cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '/' + model_id_start + '/' cbr_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '/' + model_id_start + '/' output_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '/' + model_id_start + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames('../../misc/', model_id_start) if compare_between == 'MCMCID': comps = ['3', '119'] elif compare_between == 'MODEL': comps = [model_id_start, '911'] mcmc_id = '119' elif compare_between == 'NBEUNC': comps = [assim_type, '_p25adapted_NBEuncreduced'] mcmc_id = '119' ens_spread = [ np.ones((len(pixels), len(vrs), len(n_iters[0]))) * float('nan'), np.ones((len(pixels), len(vrs), len(n_iters[1]))) * float('nan') ] conv = [ np.ones((len(pixels), len(n_iters[0]))) * float('nan'), np.ones((len(pixels), len(n_iters[1]))) * float('nan') ] for pixel in pixels: for comp in comps: if compare_between == 'MCMCID': mcmc_id = comp elif compare_between == 'MODEL': model_id_start = comp cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + assim_type + '/' + comp + '/' cbr_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + assim_type + '/' + comp + '/' output_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output' + assim_type + '/' + comp + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames(cur_dir + '../../misc/', comp) elif compare_between == 'NBEUNC': assim_type = comp cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf' + comp + '/' + model_id_start + '/' cbr_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr' + comp + '/' + model_id_start + '/' output_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output' + comp + '/' + model_id_start + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames(cur_dir + '../../misc/', model_id_start) os.chdir(cur_dir + cbr_dir) for it in n_iters[comps.index(comp)]: files = glob.glob('*MCMC' + mcmc_id + '_' + it + '_' + pixel + '*.cbr') pixel_chains = autil.find_all_chains(files, pixel) pixel_chains.sort() # filenames #if ((comp=='911') & (pixel_chains[0][-5]=='1')): pixel_chains.pop(0) #if ((comp=='911') & (pixel_chains[0][-5]=='2')): pixel_chains.pop(0) print(pixel_chains) cbf_pixel = rwb.read_cbf_file( cur_dir + cbf_dir + pixel_chains[0].partition('_MCMC')[0] + '_' + pixel + '.cbf') cbr_chain_list = [] for pixel_chain in pixel_chains[:4]: print(pixel_chain) cbr_chain = rwb.read_cbr_file(pixel_chain, {'nopars': len(parnames)}) cbr_pixel = np.copy(cbr_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (cbr_pixel, cbr_chain), axis=0) flux_chain = rwb.readbinarymat( cur_dir + output_dir + 'fluxfile_' + pixel_chain[:-3] + 'bin', [ cbf_pixel['nodays'], autil.get_nofluxes_nopools_lma(model_id_start)[0] ]) pool_chain = rwb.readbinarymat( cur_dir + output_dir + 'poolfile_' + pixel_chain[:-3] + 'bin', [ cbf_pixel['nodays'] + 1, autil.get_nofluxes_nopools_lma(model_id_start)[1] ]) flux_pixel = np.copy(flux_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (flux_pixel, flux_chain), axis=0) pool_pixel = np.copy(pool_chain) if pixel_chains.index( pixel_chain) == 0 else np.concatenate( (pool_pixel, pool_chain), axis=0) cbr_chain_list.append(cbr_chain) print(np.shape(cbr_chain)) print(np.shape(cbr_pixel)) gr = autil.gelman_rubin(cbr_chain_list) print('%i of %i parameters converged' % (sum(gr < 1.2), len(parnames))) conv[comps.index( comp)][pixels.index(pixel), n_iters[comps.index(comp)].index(it)] = sum( gr < 1.2) / len(parnames) * 100 for var in vrs: print(var) try: obs = cbf_pixel['OBS'][var] obs[obs == -9999] = float('nan') except: obs = np.ones(cbf_pixel['nodays']) * np.nan n_obs = np.sum(np.isfinite(obs)) fwd_data = autil.get_output( var, model_id_start, flux_pixel, pool_pixel, cbr_pixel, autil.get_nofluxes_nopools_lma(model_id_start)[2]) if len(fwd_data) > 0: if fwd_data.shape[1] > cbf_pixel['nodays']: fwd_data = fwd_data[:, :-1] fwd_data = autil.remove_outliers(fwd_data) med = np.nanmedian(fwd_data, axis=0) ub = np.nanpercentile(fwd_data, 75, axis=0) lb = np.nanpercentile(fwd_data, 25, axis=0) ens_spread[comps.index(comp)][ pixels.index(pixel), vrs.index(var), n_iters[comps.index(comp)].index(it)] = np.nanmean( abs(ub - lb)) if metric == 'spread' else np.sqrt( np.nansum((med - obs)**2) / n_obs) print(ens_spread[comps.index(comp)] [pixels.index(pixel), vrs.index(var), n_iters[comps.index(comp)].index(it)]) print(ens_spread) for var in vrs: autil.plot_spread_v_iter( ens_spread, pixels, vrs.index(var), var, n_iters, metric, cur_dir + plot_dir + 'spread_v_iter', 'iter_test' + assim_type + '_' + compare_between + '_' + model_id_start + '_' + var + '_' + metric, single_val=True ) #'iter_test_MCMC'+mcmc_id+'_'+model_id_start+'_'+var + '_' + metric) autil.plot_conv_v_iter(conv, pixels, n_iters, cur_dir + plot_dir + 'spread_v_iter', 'iter_test' + assim_type + '_' + compare_between + '_' + model_id_start + '_conv', single_val=True) return
def main(): # set run information to read model_id = sys.argv[1] run_type = sys.argv[2] # ALL OR SUBSET mcmc_id = sys.argv[3] # 119 for normal, 3 for DEMCMC n_iter = sys.argv[4] nbe_optimization = sys.argv[5] # OFF OR ON runtime_assim = int(sys.argv[6]) ens_size = 500 assim_type = '_p25adapted' # set directories cur_dir = os.getcwd() + '/' mdf_dir = '../code/CARDAMOM_2.1.6c/C/projects/CARDAMOM_MDF/' if nbe_optimization=='OFF' else '../code/CARDAMOM_Uma_2.1.6c-master/C/projects/CARDAMOM_MDF/' runmodel_dir = '../code/CARDAMOM_2.1.6c/C/projects/CARDAMOM_GENERAL/' if nbe_optimization=='OFF' else '../code/CARDAMOM_Uma_2.1.6c-master/C/projects/CARDAMOM_GENERAL/' cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf'+assim_type+'/' + model_id + '/' cbf_ic_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf'+assim_type+'/ic_test/' + model_id + '/' cbr_pft_dir = '../../../../../scratch/users/cfamigli/cardamom/files/cbr'+assim_type+'_pft/' + model_id + '/' cbr_ic_dir = '../../../../../scratch/users/cfamigli/cardamom/files/cbr'+assim_type+'_pft/ic_test/' + model_id + '/' output_ic_dir = '../../../../../scratch/users/cfamigli/cardamom/files/output'+assim_type+'_pft/ic_test/' + model_id + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' # get model specific information parnames = autil.get_parnames('../../misc/', model_id) ic_inds = autil.get_inds_ic(model_id) # get indices of initial condition parameters if mcmc_id=='119': frac_save_out = str(int(int(n_iter)/500)) elif mcmc_id=='3': frac_save_out = str(int(int(n_iter)/500*100)) # n_iterations/ frac_save_out * 100 will be ensemble size # select which pixels to submit os.chdir(cbf_dir) if run_type=='ALL': cbf_files = glob.glob('*.cbf') elif run_type=='SUBSET_INPUT': cbf_files = select_cbf_files(glob.glob('*.cbf'), ['3809','3524','2224','4170','1945','3813','4054','3264','1271','3457']) os.chdir(cur_dir + '/../') cbf_files.sort() ############################################################################################################################################ # run through pixel cbfs for cbf_file in cbf_files: pixel = cbf_file[-8:-4] cbf_data = rwb.read_cbf_file(cbf_dir + cbf_file) # get list of pft cbrs for pixel cbr_files = glob.glob(cbr_pft_dir + '*' + pixel + '*.cbr') for cbr_file in cbr_files: cbr_data = rwb.read_cbr_file(cbr_file, {'nopars': len(parnames)}) parpriors = np.concatenate((np.nanmedian(cbr_data, axis=0), np.ones(50-len(parnames))*-9999.)) parpriorunc = np.concatenate((np.ones(len(parnames))*1.001, np.ones(50-len(parnames))*-9999.)) parpriors[ic_inds[0]:ic_inds[1]] = -9999. parpriorunc[ic_inds[0]:ic_inds[1]] = -9999. cbf_data['PARPRIORS'] = parpriors.reshape(-1,1) cbf_data['PARPRIORUNC'] = parpriorunc.reshape(-1,1) #rwb.CARDAMOM_WRITE_BINARY_FILEFORMAT(cbf_data, cbf_ic_dir + cbr_file.partition(cbr_pft_dir)[-1].partition('cbr')[0]+'cbf') ############################################################################################################################################ txt_filename = 'combined_assim_forward_list_' + model_id + '_' + run_type + assim_type+ '_MCMC'+mcmc_id + '_'+n_iter + '_ic_test.txt' txt_file = open(txt_filename, 'w') for cbf_ic_file in glob.glob(cbf_ic_dir + '*.cbf'): f = cbf_ic_file.partition(cbf_ic_dir)[-1] txt_file.write('%sCARDAMOM_MDF.exe %s%s %s%s %s 0 %s 0.001 %s 1000' % (mdf_dir, cbf_ic_dir[3:], f, cbr_ic_dir, f[:-4] + '.cbr', n_iter, frac_save_out, mcmc_id)) txt_file.write(' && %sCARDAMOM_RUN_MODEL.exe %s%s %s%s %s%s %s%s %s%s %s%s' % (runmodel_dir, cbf_ic_dir[3:], f, cbr_ic_dir, f[:-4] + '.cbr', output_ic_dir, 'fluxfile_'+ f[:-4] +'.bin', output_ic_dir, 'poolfile_'+ f[:-4] +'.bin', output_ic_dir, 'edcdfile_'+ f[:-4] +'.bin', output_ic_dir, 'probfile_'+ f[:-4] +'.bin')) txt_file.write('\n') txt_file.close() sh_file = open(txt_filename[:-3] + 'sh', 'w') autil.fill_in_sh(sh_file, array_size=len(glob.glob(cbf_ic_dir + '*.cbf')), n_hours=runtime_assim, txt_file=txt_filename, combined=True) return
def main(): model_id = sys.argv[1] run_type = sys.argv[2] # ALL or SUBSET mcmc_id = sys.argv[3] # 119 for normal, 3 for DEMCMC n_iter = sys.argv[4] ens_size = 500 assim_type = '_p25adapted' use_bestchains_pkl = False cur_dir = os.getcwd() + '/' cbf_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbf'+assim_type+'_ef_ic/' + model_id + '/' cbr_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/cbr'+assim_type+'_ef/' + model_id + '/' output_dir = '../../../../../../scratch/users/cfamigli/cardamom/files/output'+assim_type+'_ef/' + model_id + '/' plot_dir = '../../../../../../scratch/users/cfamigli/cardamom/plots/' parnames = autil.get_parnames('../../misc/', model_id) # load list of land pixels pixels = list(set([file[-8:-4] for file in glob.glob(cbf_dir + '*.cbf')])) if run_type=='ALL' else ['3809','3524','2224','4170','1945','3813','4054','3264','1271','3457'] pixels.sort() # load list of cbrs cbr_files = glob.glob(cbr_dir+'*MCMC'+mcmc_id+'_'+n_iter+'_*PLS*forward*.cbr') # for loop over pixels gr_pixels = np.zeros(len(pixels))*np.nan # list of GR for each pixel, for mapping par_pixels = np.zeros((len(pixels), len(parnames)))*np.nan for pixel in pixels: print(pixel, pixels.index(pixel)) pixel_chains = autil.find_all_chains(cbr_files, pixel) pixel_chains.sort() # filenames if use_bestchains_pkl: conv_chains_pkl = read_pickle(glob.glob(cbr_dir + model_id + assim_type + '*_MCMC'+mcmc_id + '_'+n_iter+'_best_subset.pkl')[0]) conv_chains_pkl.columns = ['pixel','bestchains','conv'] #rename columns for easier access if pixel in conv_chains_pkl['pixel'].values: bestchains = conv_chains_pkl.loc[conv_chains_pkl['pixel']==pixel]['bestchains'].values[0][1:] print(bestchains) pixel_chains = [pixel_chain for pixel_chain in pixel_chains if pixel_chain.partition(pixel+'_')[-1][:-4] in bestchains] else: continue #cbf_pixel = rwb.read_cbf_file(cur_dir + cbf_dir + pixel_chains[0].partition('_MCMC')[0]+'_'+pixel+'.cbf') cbf_filename = glob.glob(cur_dir + cbf_dir + '*'+pixel+'.cbf')[0] cbf_pixel = rwb.read_cbf_file(cbf_filename) cbr_chain_list = [] for pixel_chain in pixel_chains: print(pixel_chain) cbr_chain = rwb.read_cbr_file(pixel_chain, {'nopars': len(parnames)}) cbr_chain = autil.modulus_Bday_Fday(cbr_chain, parnames) cbr_pixel = np.copy(cbr_chain) if pixel_chains.index(pixel_chain)==0 else np.concatenate((cbr_pixel, cbr_chain), axis=0) #autil.plot_par_histograms(cbr_chain, parnames=parnames, savepath=cur_dir+plot_dir+'dists/', title=model_id+'_'+pixel_chain[:-3]+'png') try: flux_chain = rwb.readbinarymat(cur_dir + output_dir + 'fluxfile_' + pixel_chain.partition(cbr_dir)[-1][:-3]+'bin', [cbf_pixel['nodays'], autil.get_nofluxes_nopools_lma(model_id)[0]]) pool_chain = rwb.readbinarymat(cur_dir + output_dir + 'poolfile_' + pixel_chain.partition(cbr_dir)[-1][:-3]+'bin', [cbf_pixel['nodays']+1, autil.get_nofluxes_nopools_lma(model_id)[1]]) #autil.plot_flux_pool_timeseries(cbf_pixel, cbr_chain, flux_chain, pool_chain, autil.get_nofluxes_nopools_lma(model_id)[2], savepath=cur_dir+plot_dir+'timeseries/', title=model_id+'_'+pixel_chain[:-3]+'png') flux_pixel = np.copy(flux_chain) if pixel_chains.index(pixel_chain)==0 else np.concatenate((flux_pixel, flux_chain), axis=0) pool_pixel = np.copy(pool_chain) if pixel_chains.index(pixel_chain)==0 else np.concatenate((pool_pixel, pool_chain), axis=0) except Exception as e: pass if np.shape(cbr_chain)[0]==ens_size: cbr_chain_list.append(cbr_chain) #print(np.shape(cbr_chain)) if len(cbr_chain_list)>1: gr = autil.gelman_rubin(cbr_chain_list) #print(gr) print('%i of %i parameters converged' % (sum(gr<1.2), len(parnames))) gr_pixels[pixels.index(pixel)] = sum(gr<1.2)/len(parnames) else: gr = np.nan par_pixels[pixels.index(pixel),:] = np.nanmedian(cbr_pixel, axis=0) #autil.plot_par_histograms(cbr_pixel, parnames=parnames, savepath=cur_dir+plot_dir+'dists/', title=model_id+assim_type+'_MCMC'+mcmc_id+'_'+cbf_filename.partition(cbf_dir)[-1][:-4]+'.png') #autil.plot_flux_pool_timeseries(cbf_pixel, cbr_pixel, flux_pixel, pool_pixel, autil.get_nofluxes_nopools_lma(model_id)[2], savepath=cur_dir+plot_dir+'timeseries/', title=model_id+assim_type+'_MCMC'+mcmc_id+'_'+cbf_filename.partition(cbf_dir)[-1][:-4]+'.png') #vmax = [None,None,None,None,None,None,None,None,None,None,None,None,None,None,None,None,None,210,200,215,6600,195,24000,None,None,None,900,None,None,None,None,None,None,None] #np.nanpercentile(par_pixels[:,par], 90) for par in range(len(parnames)): autil.plot_map(nrows=46, ncols=73, land_pixel_list=[file[-8:-4] for file in glob.glob(cur_dir + cbf_dir + '*.cbf')], pixel_value_list=pixels, value_list=par_pixels[:,par], vmax=np.nanpercentile(par_pixels[:,par], 90), savepath=cur_dir+plot_dir+'maps/', savename='par'+str(par)+'_' + model_id +assim_type+ '_MCMC' + mcmc_id +'_'+ n_iter+'_EF_clipped_PLS_soilgrids_poolobs_rescaled_forward') #autil.plot_map(nrows=46, ncols=73, land_pixel_list=[file[-8:-4] for file in glob.glob(cur_dir + cbf_dir + '*.cbf')], pixel_value_list=pixels, value_list=np.ones(len(pixels)), savepath=cur_dir+plot_dir+'maps/', title='test_pixels.png') #autil.plot_map(nrows=46, ncols=73, land_pixel_list=[file[-8:-4] for file in glob.glob(cur_dir + cbf_dir + '*.cbf')], pixel_value_list=pixels, value_list=gr_pixels*100, savepath=cur_dir+plot_dir+'maps/', savename='gr_' + model_id + assim_type+ '_' +run_type+ '_MCMC' + mcmc_id + '_' + n_iter) return