예제 #1
0
def run_test_episode_buffer(
    env: EnvWrapper,
    policy: Policy,
    trainer: Trainer,
    num_train_episodes: int,
    passing_score_bar: float,
    num_eval_episodes: int,
    use_gpu: bool = False,
):
    training_policy = policy

    post_episode_callback = train_post_episode(env, trainer, use_gpu)

    # pyre-fixme[16]: `EnvWrapper` has no attribute `seed`.
    env.seed(SEED)
    # pyre-fixme[16]: `EnvWrapper` has no attribute `action_space`.
    env.action_space.seed(SEED)

    train_rewards = train_policy(
        env,
        training_policy,
        num_train_episodes,
        post_step=None,
        post_episode=post_episode_callback,
        use_gpu=use_gpu,
    )

    # Check whether the max score passed the score bar; we explore during training
    # the return could be bad (leading to flakiness in C51 and QRDQN).
    assert np.max(train_rewards) >= passing_score_bar, (
        f"max reward ({np.max(train_rewards)}) after training for "
        f"{len(train_rewards)} episodes is less than < {passing_score_bar}.\n")

    serving_policy = policy
    eval_rewards = eval_policy(env,
                               serving_policy,
                               num_eval_episodes,
                               serving=False)
    assert (
        eval_rewards.mean() >= passing_score_bar
    ), f"Eval reward is {eval_rewards.mean()}, less than < {passing_score_bar}.\n"
예제 #2
0
def run_test_online_episode(
    env: Env__Union,
    model: ModelManager__Union,
    num_train_episodes: int,
    passing_score_bar: float,
    num_eval_episodes: int,
    use_gpu: bool,
):
    """
    Run an online learning test. At the end of each episode training is run on the trajectory.
    """
    env = env.value
    # pyre-fixme[16]: Module `pl` has no attribute `seed_everything`.
    pl.seed_everything(SEED)
    env.seed(SEED)
    env.action_space.seed(SEED)

    normalization = build_normalizer(env)
    logger.info(f"Normalization is: \n{pprint.pformat(normalization)}")

    manager = model.value
    trainer = manager.initialize_trainer(
        use_gpu=use_gpu,
        reward_options=RewardOptions(),
        normalization_data_map=normalization,
    )
    policy = manager.create_policy(serving=False)

    device = torch.device("cuda") if use_gpu else torch.device("cpu")

    agent = Agent.create_for_env(env, policy, device=device)

    # pyre-fixme[16]: Module `pl` has no attribute `LightningModule`.
    if isinstance(trainer, pl.LightningModule):
        # pyre-fixme[16]: Module `pl` has no attribute `Trainer`.
        pl_trainer = pl.Trainer(max_epochs=1,
                                gpus=int(use_gpu),
                                deterministic=True)
        dataset = EpisodicDataset(env=env,
                                  agent=agent,
                                  num_episodes=num_train_episodes,
                                  seed=SEED)
        pl_trainer.fit(trainer, dataset)
    else:
        post_episode_callback = train_post_episode(env, trainer, use_gpu)
        _ = train_policy(
            env,
            policy,
            num_train_episodes,
            post_step=None,
            post_episode=post_episode_callback,
            use_gpu=use_gpu,
        )

    eval_rewards = evaluate_for_n_episodes(
        n=num_eval_episodes,
        env=env,
        agent=agent,
        max_steps=env.max_steps,
        num_processes=1,
    ).squeeze(1)
    assert (
        eval_rewards.mean() >= passing_score_bar
    ), f"Eval reward is {eval_rewards.mean()}, less than < {passing_score_bar}.\n"