예제 #1
0
def demo():
    T = 256
    n_env = 128
    n_stabled = 8
    worlds = MockWorlds.initial(n_env)

    agent = MockAgent(0)
    network = agent.network
    league = League(agent, MockAgent, worlds.n_envs, n_stabled=n_stabled, stable_interval=8, verbose=False)

    fielded = np.zeros((T, T+1))
    stabled = np.zeros((T, T+1))
    for t in range(T):
        skills = agent(worlds)
        new_worlds, transitions = worlds.step(skills)
        league.update(agent, worlds.seats, transitions)
        worlds = new_worlds

        network.skill[()] = 10. if t == 6 else 0.

        for n, s in zip(league.splitter.names, league.splitter.slices):
            fielded[t, n] = s.stop - s.start
        
        for n in league.stable.names:
            stabled[t, n] = 1.

    parts = dotdict.dotdict(
        agent=agent,
        league=league,
        worlds=worlds)
    trace = dotdict.dotdict(
        fielded=fielded,
        stabled=stabled)

    return parts, trace
예제 #2
0
파일: core.py 프로젝트: lgmars/megastep
    def state(self, e):
        """Returns a :class:`~rebar.dotdict.dotdict` tree representing the state of environment ``e``.

        A typical state looks like this::

            arrdict:
            n_envs          1
            n_agents        4
            res             512
            fov             60
            agent_radius    0.10606601717798211
            fps             10
            scenery           arrdict:
                            model       Tensor((8, 2, 2), torch.float32)
                            lines       Tensor((307, 2, 2), torch.float32)
                            lights      Tensor((21, 3), torch.float32)
                            textures    <megastepcuda.Ragged2D object at 0x7fba34112eb0>
                            baked       <megastepcuda.Ragged1D object at 0x7fba34112670>
            agents          arrdict:
                            angles       Tensor((4,), torch.float32)
                            positions    Tensor((4, 2), torch.float32)
            progress        Tensor((4,), torch.float32)

        This state tree is usually passed onto a :ref:`plotting` function.""" 
        options = ('n_envs', 'n_agents', 'res', 'fov', 'agent_radius', 'fps')
        options = {k: getattr(self, k) for k in options}

        return arrdict.clone(dotdict.dotdict(
                **options,
                scenery=self.scenery.state(e),
                agents=self.agents.state(e),
                progress=self.progress[e]))
예제 #3
0
def geometry_data(regenerate=False):
    # Why .npz.gz? Because applying gzip manually manages x10 better compression than
    # np.savez_compressed. They use the same compression alg, so I assume the difference
    # is in the default compression setting - which isn't accessible in np.savez_compressec.
    p = Path('.cache/cubicasa-geometry.npz.gz')
    if not p.exists() or regenerate:
        p.parent.mkdir(exist_ok=True, parents=True)
        if regenerate:
            log.info('Regenerating geometry cache from SVG cache.')
            with parallel.parallel(safe_geometry) as pool:
                gs = pool.wait({
                    str(row.id): pool(row.id, row.svg)
                    for _, row in svg_data().iterrows()
                })
            gs = flatten({k: v for k, v in gs.items() if v is not None})

            bs = BytesIO()
            np.savez(bs, **gs)
            p.write_bytes(gzip.compress(bs.getvalue()))
        else:
            #TODO: Shift this to Github
            url = 'https://www.dropbox.com/s/3ohut8lvmr8lkwg/cubicasa-geometry.npz.gz?raw=1'
            p.write_bytes(download(url))

    # np.load is kinda slow.
    raw = gzip.decompress(p.read_bytes())
    with ZipFile(BytesIO(raw)) as zf:
        flat = dotdict.dotdict(
            {n[:-4]: fastload(zf.read(n))
             for n in zf.namelist()})
    return unflatten(flat)
예제 #4
0
    def __init__(self, n_envs, *args, **kwargs):
        geometries = cubicasa.sample(n_envs)
        scenery = scene.scenery(geometries, 1)
        self.core = core.Core(scenery, *args, res=4 * 64, fov=130, **kwargs)
        self._rgb = modules.RGB(self.core, n_agents=1, subsample=4)
        self._depth = modules.Depth(self.core, n_agents=1, subsample=4)
        self._mover = modules.MomentumMovement(self.core)
        self._imu = modules.IMU(self.core)
        self._respawner = modules.RandomSpawns(geometries, self.core)

        self.action_space = self._mover.space
        self.obs_space = dotdict.dotdict(rgb=self._rgb.space,
                                         d=self._depth.space,
                                         imu=self._imu.space)

        self._tex_to_env = self.core.scenery.lines.inverse[
            self.core.scenery.textures.inverse.long()].long()
        self._seen = torch.full_like(self._tex_to_env, False)
        self._potential = self.core.env_full(0.)

        self._lengths = torch.zeros(self.core.n_envs,
                                    device=self.core.device,
                                    dtype=torch.int)

        self.device = self.core.device
예제 #5
0
    def record(self, transitions, live, start, end):
        #TODO: Figure out how to get scatter_add_ to work on vector-valued vals
        wins = (transitions.rewards == 1).int()
        scatter_add_(self.stats.wins[:, :, 0], live, wins[:, 0])
        scatter_add_(self.stats.wins[:, :, 1], live, wins[:, 1])
        scatter_add_(self.stats.moves, live, 1)
        scatter_add_(self.stats.times, live,
                     (end - start) / transitions.terminal.size(0))

        done = self.stats.wins.sum(-1) == self.tracker.n_envs_per
        stats = self.stats[done].cpu()
        results = []
        for idx in range(stats.indices.size(0)):
            item = stats[idx]
            names = tuple(self.tracker.names[i] for i in item.indices)
            results.append(
                dotdict.dotdict(names=names,
                                wins=tuple(map(float, item.wins)),
                                moves=float(item.moves),
                                games=float(sum(item.wins)),
                                times=float(item.times),
                                boardsize=self.worlds.boardsize))

        self.stats.wins[done] = -1

        return results
예제 #6
0
def initial_stats(n_jobs):
    return dotdict.dotdict(finished=0,
                           total=n_jobs,
                           moves=0,
                           games=0,
                           matchups=0,
                           start=time.time(),
                           end=time.time() + 1)
예제 #7
0
파일: fsm.py 프로젝트: victor8733/megastep
 def to(self, state, action=0, reward=0., weight=1.):
     action = int(action)
     self._builder._trans.append(
         dotdict.dotdict(prev=self._name,
                         action=action,
                         next=state,
                         reward=reward,
                         weight=weight))
     return self
예제 #8
0
def gather(wins, moves, matchup_idxs, names, boardsize):
    names = np.array(names)
    n_envs, n_seats = matchup_idxs.shape
    results = []
    for p in matchup_patterns(n_seats):
        ws = wins[(matchup_idxs == p).all(-1)].sum(0)
        ms = moves[(matchup_idxs == p).all(-1)].sum(0)
        results.append(
            dotdict.dotdict(names=tuple(names[p]),
                            wins=tuple(map(float, ws)),
                            moves=float(ms[0]),
                            games=float(ws.sum()),
                            boardsize=boardsize))
    return results
예제 #9
0
파일: fsm.py 프로젝트: victor8733/megastep
    def build(self):
        states = ({x.state
                   for x in self._obs} | {x.prev
                                          for x in self._trans}
                  | {x.next
                     for x in self._trans})

        actions = {x.action for x in self._trans}
        assert max(actions) == len(actions) - 1, 'Action set isn\'t contiguous'

        indices = {s: i for i, s in enumerate(states)}
        names = np.array(list(states))

        n_states = len(states)
        n_actions = len(actions)
        (d_obs, ) = {len(x.obs) for x in self._obs}

        obs = torch.full((n_states, d_obs), np.nan)
        start = torch.full((n_states, ), 0.)
        for x in self._obs:
            obs[indices[x.state]] = torch.as_tensor(x.obs)
            start[indices[x.state]] = x.start

        trans = torch.full((n_states, n_actions, n_states), 0.)
        reward = torch.full((n_states, n_actions), 0.)
        for x in self._trans:
            trans[indices[x.prev], x.action, indices[x.next]] = x.weight
            reward[indices[x.prev], x.action] = x.reward

        terminal = (trans.sum(-1).max(-1).values == 0)

        assert start.sum() > 0, 'No start state declared'

        return dotdict.dotdict(obs=obs,
                               trans=trans,
                               reward=reward,
                               terminal=terminal,
                               start=start,
                               indices=indices,
                               names=names,
                               n_states=n_states,
                               n_actions=n_actions,
                               d_obs=d_obs)
예제 #10
0
    def __init__(self, n_envs, n_agents, *args, **kwargs):
        geometries = cubicasa.sample(max(n_envs // 4, 1))
        scenery = scene.scenery(geometries, n_agents)
        self.core = core.Core(scenery, *args, res=4 * 128, fov=70, **kwargs)
        self._rgb = modules.RGB(self.core, n_agents=1, subsample=4)
        self._depth = modules.Depth(self.core, n_agents=1, subsample=4)
        self._imu = modules.IMU(self.core, n_agents=1)
        self._movement = modules.MomentumMovement(self.core, n_agents=1)
        self._spawner = modules.RandomSpawns(geometries, self.core)

        self.action_space = self._movement.space
        self.obs_space = dotdict.dotdict(rgb=self._rgb.space,
                                         d=self._depth.space,
                                         imu=self._imu.space,
                                         health=spaces.MultiVector(1, 1))

        self._bounds = arrdict.torchify(
            np.stack([g.masks.shape * g.res
                      for g in geometries])).to(self.core.device)
        self._health = self.core.agent_full(np.nan)
        self._damage = self.core.agent_full(np.nan)

        self.n_envs = self.core.n_envs * self.core.n_agents
        self.device = self.core.device
예제 #11
0
    def auxinfo(f, K=1001, S=50):
        μ = np.linspace(*μ_lims, K)
        σ2 = np.logspace(*σ2_lims, K, base=10)

        zs, ws = np.polynomial.hermite_e.hermegauss(S)
        ds = (μ[:, None, None] + zs[None, None, :] * σ2[None, :, None]**.5)

        scale = 1 / (2 * np.pi)**.5
        fs = scale * (f(ds) * ws).sum(-1)
        f = sp.interpolate.RectBivariateSpline(μ, σ2, fs, kx=1, ky=1)

        dμs = (fs[2:, :] - fs[:-2, :]) / (μ[2:] - μ[:-2])[:, None]
        dμ = sp.interpolate.RectBivariateSpline(μ[1:-1], σ2, dμs, kx=2, ky=2)
        dσ2s = (fs[:, 2:] - fs[:, :-2]) / (σ2[2:] - σ2[:-2])[None, :]
        dσ2 = sp.interpolate.RectBivariateSpline(μ, σ2[1:-1], dσ2s, kx=2, ky=2)

        return dotdict.dotdict(μ=μ,
                               σ2=σ2,
                               f=f,
                               dμ=dμ,
                               dσ2=dσ2,
                               fs=fs,
                               dμs=dμs,
                               dσs=dσ2s)
예제 #12
0
 def state(self, e=0):
     return dotdict.dotdict(
         core=self.core.state(e),
         rgb=self.rgb.state(e))
예제 #13
0
def pandas(soln, names):
    return dotdict.dotdict(μ=pd.Series(soln.μ, names),
                           Σ=pd.DataFrame(soln.Σ, names, names))
예제 #14
0
파일: fsm.py 프로젝트: victor8733/megastep
 def state(self, name, obs, start=0.):
     if isinstance(obs, (int, float, bool)):
         obs = (obs, )
     self._obs.append(dotdict.dotdict(state=name, obs=obs, start=start))
     return State(name, self)