def main(): # Settings device = int(sys.argv[1]) if len(sys.argv) > 1 else None batch_size = 100 n_l_train_data = 4000 n_train_data = 50000 n_cls = 10 learning_rate = 1. * 1e-3 n_epoch = 50 act = F.relu iter_epoch = n_train_data / batch_size n_iter = n_epoch * iter_epoch # Separate dataset home = os.environ.get("HOME") fpath = os.path.join(home, "datasets/cifar10/cifar-10.npz") separator = Separator(n_l_train_data) separator.separate_then_save(fpath) l_train_path = os.path.join(home, "datasets/cifar10/l_cifar-10.npz") u_train_path = os.path.join(home, "datasets/cifar10/cifar-10.npz") test_path = os.path.join(home, "datasets/cifar10/cifar-10.npz") zca_path = os.path.join(home, "datasets/cifar10/zca_components.npz") # DataReader, Model, Optimizer, Losses data_reader = Cifar10DataReader(l_train_path, u_train_path, test_path, zca_path=zca_path, batch_size=batch_size, n_cls=n_cls, da=True, shape=True) exp = Experiment005( device, learning_rate, act, n_cls, ) # Training loop print("# Training loop") epoch = 1 st = time.time() acc_prev = 0. for i in range(n_iter): # Get data x_l, y_l = [Variable(to_device(x, device)) \ for x in data_reader.get_l_train_batch()] x_u, _ = [Variable(to_device(x, device)) \ for x in data_reader.get_u_train_batch()] # Train exp.train(x_l, y_l, x_u) # Eval if (i + 1) % iter_epoch == 0: # Get data x_l, y_l = [Variable(to_device(x, device)) \ for x in data_reader.get_test_batch()] bs = 100 accs = [] for i in range(0, x_l.shape[0], bs): accs.append( float( cuda.to_cpu( exp.test(x_l[i:i + bs, ], y_l[i:i + bs, ]).data))) msg = "Epoch:{},ElapsedTime:{},Acc:{}".format( epoch, time.time() - st, np.mean(accs)) print(msg) acc_prev = accs[-1] st = time.time() epoch += 1
def main(): # Settings device = int(sys.argv[1]) if len(sys.argv) > 1 else None batch_size = 100 n_l_train_data = 4000 n_train_data = 50000 n_cls = 10 learning_rate = 1. * 1e-3 n_epoch = 50 act = F.relu iter_epoch = n_train_data / batch_size n_iter = n_epoch * iter_epoch # Separate dataset home = os.environ.get("HOME") fpath = os.path.join(home, "datasets/cifar10/cifar-10.npz") separator = Separator(n_l_train_data) separator.separate_then_save(fpath) l_train_path = os.path.join(home, "datasets/cifar10/l_cifar-10.npz") u_train_path = os.path.join(home, "datasets/cifar10/cifar-10.npz") test_path = os.path.join(home, "datasets/cifar10/cifar-10.npz") zca_path = os.path.join(home, "datasets/cifar10/zca_components.npz") # DataReader, Model, Optimizer, Losses data_reader = Cifar10DataReader(l_train_path, u_train_path, test_path, zca_path=zca_path, batch_size=batch_size, n_cls=n_cls, da=True, shape=True) exp = Experiment006( device, learning_rate, act, n_cls, ) # Training loop print("# Training loop") epoch = 1 st = time.time() acc_prev = 0. for i in range(n_iter): # Get data x_l, y_l = [Variable(to_device(x, device)) \ for x in data_reader.get_l_train_batch()] x_u, _ = [Variable(to_device(x, device)) \ for x in data_reader.get_u_train_batch()] # Train exp.train(x_l, y_l, x_u) # Eval if (i+1) % iter_epoch == 0: # Get data x_l, y_l = [Variable(to_device(x, device)) \ for x in data_reader.get_test_batch()] bs = 100 accs = [] for i in range(0, x_l.shape[0], bs): accs.append(float(cuda.to_cpu( exp.test(x_l[i:i+bs, ], y_l[i:i+bs, ]).data))) msg = "Epoch:{},ElapsedTime:{},Acc:{}".format( epoch, time.time() - st, np.mean(accs)) print(msg) acc_prev = accs[-1] st = time.time() epoch +=1