예제 #1
0
        fea_dict[idx] = dataset_iris[0][idx]
    return npd, fea_dict


data_all, fea_dict = generate_sample_dataset_and_feature_dict(dataset_iris)

from sklearn.model_selection import train_test_split
data_train, data_test = train_test_split(data_all)
print(len(data_train), len(data_test))

# create dataset instance from structured ndarray data
import recsys.dataset as dataset
dataset = imp.reload(dataset)
train_dataset = dataset.Dataset(data_train,
                                total_users=1,
                                total_items=len(fea_dict),
                                implicit_negative=False,
                                name='Train')
test_dataset = dataset.Dataset(data_test,
                               total_users=1,
                               total_items=len(fea_dict),
                               implicit_negative=False,
                               name='Test')

# create featurizer for mapping: (user, item) -> vector
import recsys.featurizers.plain_featurizer as plain_featurizer
plain_featurizer = imp.reload(plain_featurizer)


class Featurizer(plain_featurizer.PlainFeaturizer):
    """
예제 #2
0
import recsys.dataset as dataset
train_data = np.load('lastfm_train.npy')
test_data = np.load('lastfm_test.npy')
total_users = max(
    set(list(train_data['user_id']) + list(test_data['user_id']))) + 1
total_items = max(
    set(list(train_data['item_id']) + list(test_data['item_id']))) + 1
print(total_users, total_items)
train_data[:2], test_data[:2]

# datasets
import recsys.dataset as dataset
dataset = imp.reload(dataset)
train_dataset = dataset.Dataset(train_data,
                                total_users,
                                total_items,
                                sortby='ts',
                                name='Train')
test_dataset = dataset.Dataset(test_data,
                               total_users,
                               total_items,
                               sortby='ts',
                               name='Test')

# hyperparamerters
dim_item_embed = 50  # dimension of item embedding
max_seq_len = 100  # the maxium length of user's listen history
num_units = 32  # Number of units in the RNN model
total_iter = int(1e3)  # iterations for training
batch_size = 100  # training batch size
eval_iter = 200  # iteration of evaluation