def test_cdf_invcdf_again(): rdz = Rediz(**REDIZ_TEST_CONFIG) normcdf = rdz._normcdf_function() norminv = rdz._norminv_function() for x in np.random.randn(100): x1 = norminv(normcdf(x)) assert abs(x - x1) < 1e-4
def test_is_valid_name(): nc = Rediz(**REDIZ_FAKE_CONFIG) s = 'dog-7214.json' assert nc.is_valid_name(s), "oops" for s in ["25824ee3-d9bf-4923-9be7-19d6c2aafcee.json"]: assert nc.is_valid_name(s),"Got it wrong for "+s
def test_its_testing_tuesday_i_am_so_happy(): okay_names = ['mystream.json','ice_cream.json','tilde~in_there.json'] bad_names = ['toomanycolons::.json','*****@*****.**','forgotjson'] for name in okay_names: assert Rediz.is_valid_name(name) for name in bad_names: assert not Rediz.is_valid_name(name)
def test_mean_percentile(): zscores = np.random.randn(100) normcdf = Rediz._normcdf_function() norminv = Rediz._norminv_function() p = [normcdf(z) for z in zscores] avg_p = Rediz.zmean_percentile(p) implied_avg = norminv(avg_p) actual_avg = np.mean(zscores) assert abs(implied_avg - actual_avg) < 1e-4
def test_morton(): zc = Rediz(**REDIZ_TEST_CONFIG) for dim in [2, 3]: for _ in range(100): prtcls = list(np.random.rand(dim)) z = zc.to_zcurve(prctls=prtcls) prtcls_back = zc.from_zcurve(z, dim=len(prtcls)) assert all( abs(p1 - p2) < 10. / zc.morton_scale(dim=3) for p1, p2 in zip( prtcls, prtcls_back)), "Morton embedding failed "
def test_mean_percentile_again(): rdz = Rediz(**REDIZ_TEST_CONFIG) zscores = np.random.randn(100) normcdf = rdz._normcdf_function() norminv = rdz._norminv_function() p = [normcdf(z) for z in zscores] avg_p = rdz.zmean_percentile(p) implied_avg = norminv(avg_p) actual_avg = np.mean(zscores) assert abs(implied_avg - actual_avg) < 1e-4
def test_conv(): rdz = Rediz(**REDIZ_TEST_CONFIG) assert rdz.min_len > 6 assert rdz.MIN_LEN > 7 assert rdz.min_len == rdz.MIN_LEN
def test_conv(): rdz = Rediz(**REDIZ_TEST_CONFIG) xs = rdz.percentile_abscissa() assert len(xs) > 5
def test_cdf_invcdf(): normcdf = Rediz._normcdf_function() norminv = Rediz._norminv_function() for x in np.random.randn(100): x1 = norminv(normcdf(x)) assert abs(x - x1) < 1e-4