예제 #1
0
 def test_prior_transform(self):
     self.p[0].bounds = PDF(stats.uniform(-10, 20))
     self.p[1].bounds = PDF(stats.norm(loc=5, scale=10))
     x = self.objective.prior_transform([0.1, 0.9])
     assert_allclose(
         x,
         stats.uniform.ppf(0.1, -10, 20),
         stats.norm.ppf(0.9, loc=5, scale=10),
     )
예제 #2
0
파일: test_bounds.py 프로젝트: igresh/refnx
    def test_pickle(self):
        bounds = PDF(norm(1.0, 2.0))
        pkl = pickle.dumps(bounds)
        pickle.loads(pkl)

        bounds = Interval()
        pkl = pickle.dumps(bounds)
        pickle.loads(pkl)
예제 #3
0
    def test_pymc3(self):
        # test objective logl against pymc3

        # don't run this test if pymc3 is not installed
        try:
            import pymc3 as pm
        except ImportError:
            return

        logl = self.objective.logl()

        from refnx.analysis import pymc_objective
        from refnx.analysis.objective import _to_pymc3_distribution

        mod = pymc_objective(self.objective)
        with mod:
            pymc_logl = mod.logp({
                'p0': self.p[0].value,
                'p1': self.p[1].value
            })

        assert_allclose(logl, pymc_logl)

        # now check some of the distributions
        with pm.Model():
            p = Parameter(1, bounds=(1, 10))
            d = _to_pymc3_distribution('a', p)
            assert_almost_equal(d.distribution.logp(2).eval(), p.logp(2))
            assert_(np.isneginf(d.distribution.logp(-1).eval()))

            q = Parameter(1, bounds=PDF(stats.uniform(1, 9)))
            d = _to_pymc3_distribution('b', q)
            assert_almost_equal(d.distribution.logp(2).eval(), q.logp(2))
            assert_(np.isneginf(d.distribution.logp(-1).eval()))

            p = Parameter(1, bounds=PDF(stats.uniform))
            d = _to_pymc3_distribution('c', p)
            assert_almost_equal(d.distribution.logp(0.5).eval(), p.logp(0.5))

            p = Parameter(1, bounds=PDF(stats.norm))
            d = _to_pymc3_distribution('d', p)
            assert_almost_equal(d.distribution.logp(2).eval(), p.logp(2))

            p = Parameter(1, bounds=PDF(stats.norm(1, 10)))
            d = _to_pymc3_distribution('e', p)
            assert_almost_equal(d.distribution.logp(2).eval(), p.logp(2))
예제 #4
0
    def test_bounds_list(self):
        bnds = bounds_list(self.p)
        assert_allclose(bnds, [(-100, 100), (-100, 100)])

        # try making a Parameter bound a normal distribution, then get an
        # approximation to box bounds
        self.p[0].bounds = PDF(norm(0, 1))
        assert_allclose(bounds_list(self.p),
                        [norm(0, 1).ppf([0.005, 0.995]), (-100, 100)])
예제 #5
0
파일: parameter.py 프로젝트: llimeht/refnx
 def bounds(self, bounds):
     if isinstance(bounds, Bounds):
         self._bounds = bounds
     elif bounds is None:
         self._bounds = Interval()
     elif hasattr(bounds, '__len__') and len(bounds) == 2:
         self.range(*bounds)
     else:
         rv = PDF(bounds)
         self._bounds = rv
예제 #6
0
    def test_pdf(self):
        pdf = PDF(norm)

        # even if it's really far out it's still a valid value
        assert_equal(pdf.valid(1003), 1003)
        # logp
        assert_equal(pdf.lnprob(0), norm.logpdf(0))

        # examine dist with finite support
        pdf = PDF(truncnorm(-1, 1), seed=1)
        assert_equal(pdf.lnprob(-2), -np.inf)
        assert_equal(pdf.lnprob(-0.5), truncnorm.logpdf(-0.5, -1, 1))

        # obtain a random value of a bounds instance
        vals = pdf.rvs(size=1000)
        assert_(np.min(vals) >= -1)
        assert_(np.min(vals) <= 1)
예제 #7
0
파일: test_bounds.py 프로젝트: igresh/refnx
    def test_user_pdf(self):
        pdf = UserPDF()
        bounds = PDF(pdf)

        assert_equal(bounds.valid(1.0), 1)
        bounds.rvs(1)
        assert_equal(bounds.logp(1.0), 0)
예제 #8
0
    def test_pickle(self):
        # a parameter and a constrained parameter should be pickleable
        bounds = PDF(norm(1., 2.))
        x = Parameter(1, bounds=bounds)
        pkl = pickle.dumps(x)
        unpkl = pickle.loads(pkl)

        # test pickling on a constrained parameter system
        a = Parameter(1.)
        b = Parameter(2.)
        b.constraint = np.sin(a)

        assert_(hasattr(a, 'sin'))
        c = [a, b]
        pkl = pickle.dumps(c)
        unpkl = pickle.loads(pkl)
        d, e = unpkl
        d.value = 2.
        assert_equal(e.value, np.sin(2.))
        # should still have all math functions
        assert_(hasattr(d, 'sin'))
예제 #9
0
파일: test_bounds.py 프로젝트: igresh/refnx
    def test_pdf(self):
        pdf = PDF(norm)

        # even if it's really far out it's still a valid value
        assert_equal(pdf.valid(1003), 1003)
        # logp
        assert_equal(pdf.logp(0), norm.logpdf(0))

        # examine dist with finite support
        pdf = PDF(truncnorm(-1, 1))
        assert_equal(pdf.logp(-2), -np.inf)
        assert_equal(pdf.logp(-0.5), truncnorm.logpdf(-0.5, -1, 1))

        # obtain a random value of a bounds instance
        vals = pdf.rvs(size=1000)
        assert_(np.min(vals) >= -1)
        assert_(np.min(vals) <= 1)

        # test a uniform distribution
        pdf = PDF(uniform(1, 9))
        assert_equal(pdf.logp(2), np.log(1.0 / 9.0))
        assert_equal(pdf.logp(10.0), np.log(1.0 / 9.0))

        # test the invcdf
        rando = np.random.uniform(size=10)
        pdf = PDF(truncnorm(-1, 1))
        assert_equal(pdf.invcdf(rando), truncnorm.ppf(rando, -1, 1))