예제 #1
0
    def test_basename_datafile(self):
        # check that the right basename is returned
        pth = 'a/b/c.nx.hdf'
        assert_(basename_datafile(pth) == 'c')

        pth = 'c.nx.hdf'
        assert_(basename_datafile(pth) == 'c')
예제 #2
0
    def test_basename_datafile(self):
        # check that the right basename is returned
        pth = "a/b/c.nx.hdf"
        assert_(basename_datafile(pth) == "c")

        pth = "c.nx.hdf"
        assert_(basename_datafile(pth) == "c")
예제 #3
0
    def test_basename_datafile(self):
        # check that the right basename is returned
        pth = 'a/b/c.nx.hdf'
        assert_(basename_datafile(pth) == 'c')

        pth = 'c.nx.hdf'
        assert_(basename_datafile(pth) == 'c')
예제 #4
0
    def reducer(self, callback=None):
        """
        Reduce all the entries in reduction_entries

        Parameters
        ----------
        callback : callable
            Function, `f(percent_finished)` that is called with the current
            percentage progress of the reduction
        """

        # refnx.reduce.reduce needs you to be in the directory where you're
        # going to write files to
        if self.output_directory:
            os.chdir(self.output_directory)

        # if no data directory was specified then assume it's the cwd
        data_directory = self.data_directory
        if not data_directory:
            data_directory = "./"

        def full_path(fname):
            f = os.path.join(data_directory, fname)
            return f

        # if the streamed directory isn't mentioned then assume it's the same
        # as the data directory
        streamed_directory = self.streamed_directory
        if not os.path.isdir(streamed_directory):
            self.streamed_directory = data_directory

        logging.info("-------------------------------------------------------"
                     "\nStarting reduction run")
        logging.info(
            "data_folder={data_directory}, trim_trailing=True, "
            "lo_wavelength={low_wavelength}, "
            "hi_wavelength={high_wavelength}, "
            "rebin_percent={rebin_percent}, "
            "normalise={monitor_normalisation}, "
            "background={background_subtraction} "
            "eventmode={streamed_reduction} "
            "event_folder={streamed_directory}".format(**self.__dict__))

        # sets up time slices for event reduction
        if self.streamed_reduction:
            eventmode = np.arange(self.stream_start, self.stream_end,
                                  self.stream_duration)
            eventmode = np.r_[eventmode, self.stream_end]
        else:
            eventmode = None

        # are you manual beamfinding?
        peak_pos = None
        if self.manual_beam_find and self.manual_beam_finder is not None:
            peak_pos = -1

        idx = 0

        cached_direct_beams = {}

        for row, val in self.reduction_entries.items():
            if not val["use"]:
                continue

            flood = None
            if val["flood"]:
                flood = full_path(val["flood"])

            combined_dataset = None

            # process entries one by one
            for ref, db in zip(
                ["reflect-1", "reflect-2", "reflect-3"],
                ["direct-1", "direct-2", "direct-3"],
            ):
                reflect = val[ref]
                direct = val[db]

                # if the file doesn't exist there's no point continuing
                if (not os.path.isfile(full_path(reflect))) or (
                        not os.path.isfile(full_path(direct))):
                    continue

                # which of the nspectra to reduce (or all)
                ref_pn = PlatypusNexus(full_path(reflect))

                if direct not in cached_direct_beams:
                    cached_direct_beams[direct] = PlatypusReduce(
                        direct, data_folder=data_directory)

                reducer = cached_direct_beams[direct]

                try:
                    reduced = reducer(
                        ref_pn,
                        scale=val["scale"],
                        h5norm=flood,
                        lo_wavelength=self.low_wavelength,
                        hi_wavelength=self.high_wavelength,
                        rebin_percent=self.rebin_percent,
                        normalise=self.monitor_normalisation,
                        background=self.background_subtraction,
                        manual_beam_find=self.manual_beam_finder,
                        peak_pos=peak_pos,
                        eventmode=eventmode,
                        event_folder=streamed_directory,
                    )
                except Exception as e:
                    # typical Exception would be ValueError for non overlapping
                    # angles
                    logging.info(e)
                    continue

                logging.info("Reduced {} vs {}, scale={}, angle={}".format(
                    reflect,
                    direct,
                    val["scale"],
                    reduced[1]["omega"][0, 0],
                ))

                if combined_dataset is None:
                    combined_dataset = ReflectDataset()

                    fname = basename_datafile(reflect)
                    fname_dat = os.path.join(self.output_directory,
                                             "c_{0}.dat".format(fname))
                    fname_xml = os.path.join(self.output_directory,
                                             "c_{0}.xml".format(fname))

                try:
                    combined_dataset.add_data(
                        reducer.data(),
                        requires_splice=True,
                        trim_trailing=True,
                    )
                except ValueError as e:
                    # datasets don't overlap
                    logging.info(e)
                    continue

            if combined_dataset is not None:
                # after you've finished reducing write a combined file.
                with open(fname_dat, "wb") as f:
                    combined_dataset.save(f)
                with open(fname_xml, "wb") as f:
                    combined_dataset.save_xml(f)
                logging.info("Written combined files: {} and {}".format(
                    fname_dat, fname_xml))

            # can be used to create a progress bar
            idx += 1
            if callback is not None:
                ok = callback(100 * idx / len(self.reduction_entries))
                if not ok:
                    break

        logging.info("\nFinished reduction run"
                     "-------------------------------------------------------")
예제 #5
0
파일: model.py 프로젝트: tjmurdoch/refnx
    def reducer(self, callback=None):
        """
        Reduce all the entries in reduction_entries

        Parameters
        ----------
        callback : callable
            Function, `f(percent_finished)` that is called with the current
            percentage progress of the reduction
        """

        # refnx.reduce.reduce needs you to be in the directory where you're
        # going to write files to
        if self.output_directory:
            os.chdir(self.output_directory)

        # if no data directory was specified then assume it's the cwd
        data_directory = self.data_directory
        if not data_directory:
            data_directory = './'

        def full_path(fname):
            f = os.path.join(data_directory, fname)
            return f

        # if the streamed directory isn't mentioned then assume it's the same
        # as the data directory
        streamed_directory = self.streamed_directory
        if not os.path.isdir(streamed_directory):
            self.streamed_directory = data_directory

        logging.info('-------------------------------------------------------'
                     '\nStarting reduction run')
        logging.info(
            'data_folder={data_directory}, trim_trailing=True, '
            'lo_wavelength={low_wavelength}, '
            'hi_wavelength={high_wavelength}, '
            'rebin_percent={rebin_percent}, '
            'normalise={monitor_normalisation}, '
            'background={background_subtraction} '
            'eventmode={streamed_reduction} '
            'event_folder={streamed_directory}'.format(**self.__dict__))

        # sets up time slices for event reduction
        if self.streamed_reduction:
            eventmode = np.arange(self.stream_start,
                                  self.stream_end,
                                  self.stream_duration)
            eventmode = np.r_[eventmode, self.stream_end]
        else:
            eventmode = None

        # are you manual beamfinding?
        peak_pos = None
        if (self.manual_beam_find and
                self.manual_beam_finder is not None):
            peak_pos = -1

        idx = 0

        cached_direct_beams = {}

        for row, val in self.reduction_entries.items():
            if not val['use']:
                continue

            flood = None
            if val['flood']:
                flood = val['flood']

            combined_dataset = None

            # process entries one by one
            for ref, db in zip(['reflect-1', 'reflect-2', 'reflect-3'],
                               ['direct-1', 'direct-2', 'direct-3']):
                reflect = val[ref]
                direct = val[db]

                # if the file doesn't exist there's no point continuing
                if ((not os.path.isfile(full_path(reflect))) or
                        (not os.path.isfile(full_path(direct)))):
                    continue

                # which of the nspectra to reduce (or all)
                ref_pn = PlatypusNexus(reflect)

                if direct not in cached_direct_beams:
                    cached_direct_beams[direct] = PlatypusReduce(
                        direct,
                        data_folder=data_directory)

                reducer = cached_direct_beams[direct]

                reduced = reducer(
                    ref_pn, scale=val['scale'],
                    norm_file_num=flood,
                    lo_wavelength=self.low_wavelength,
                    hi_wavelength=self.high_wavelength,
                    rebin_percent=self.rebin_percent,
                    normalise=self.monitor_normalisation,
                    background=self.background_subtraction,
                    manual_beam_find=self.manual_beam_finder,
                    peak_pos=peak_pos,
                    eventmode=eventmode,
                    event_folder=streamed_directory)

                logging.info(
                    'Reduced {} vs {}, scale={}, angle={}'.format(
                        reflect, direct, val['scale'],
                        reduced['omega'][0, 0]))

                if combined_dataset is None:
                    combined_dataset = ReflectDataset()

                    fname = basename_datafile(reflect)
                    fname_dat = os.path.join(self.output_directory,
                                             'c_{0}.dat'.format(fname))
                    fname_xml = os.path.join(self.output_directory,
                                             'c_{0}.xml'.format(fname))

                combined_dataset.add_data(reducer.data(),
                                          requires_splice=True,
                                          trim_trailing=True)

            if combined_dataset is not None:
                # after you've finished reducing write a combined file.
                with open(fname_dat, 'wb') as f:
                    combined_dataset.save(f)
                with open(fname_xml, 'wb') as f:
                    combined_dataset.save_xml(f)
                logging.info(
                    'Written combined files: {} and {}'.format(
                        fname_dat, fname_xml))

            # can be used to create a progress bar
            idx += 1
            if callback is not None:
                ok = callback(100 * idx / len(self.reduction_entries))
                if not ok:
                    break

        logging.info('\nFinished reduction run'
                     '-------------------------------------------------------')