예제 #1
0
    def burst(self, wavelength0, wavelength):
        """
        Calculates pdf(wavelength) for burst time component

        Parameters
        ----------
        wavelength0: float
            Nominal wavelength, Angstrom
        wavelength: float
            Wavelength, Angstrom

        Returns
        -------
        pdf: float
            Probability density function at `wavelength`
        """
        # burst time
        tc = general.tauC(wavelength0,
                          xsi=self.xsi,
                          z0=self.z0 / 1000,
                          freq=self.freq)
        # time of flight
        TOF = self.L / 1000.0 / general.wavelength_velocity(wavelength0)

        width = tc / TOF * wavelength0
        return stats.uniform.pdf(wavelength - wavelength0, -width / 2, width)
예제 #2
0
    def width(self, wavelength0):
        # burst width
        tc = general.tauC(wavelength0, xsi=self.xsi, z0=self.z0 / 1000,
                          freq=self.freq)
        # time of flight
        TOF = self.L / 1000. / general.wavelength_velocity(wavelength0)

        width = tc / TOF * wavelength0

        # da width
        width += self._da * wavelength0

        # crossing width
        tau_h = self.H / self.R / (2 * np.pi * self.freq)
        width += tau_h / TOF * wavelength0

        return width
예제 #3
0
    def crossing(self, wavelength0, wavelength):
        """
        Calculates pdf(wavelength) due to crossing time

        Parameters
        ----------
        wavelength0: float
            nominal wavelength, Angstrom
        wavelength: float
            Wavelength, Angstrom

        Returns
        -------
        pdf: float
            Probability density function at `wavelength`
        """
        tau_h = self.H / self.R / (2 * np.pi * self.freq)
        TOF = self.L / 1000.0 / general.wavelength_velocity(wavelength0)

        width = tau_h / TOF * wavelength0
        return stats.uniform.pdf(wavelength - wavelength0, -width / 2, width)
예제 #4
0
    def _reduce_single_angle(self, scale=1):
        """
        Reduce a single angle.
        """
        n_spectra = self.reflected_beam.n_spectra
        n_tpixels = np.size(self.reflected_beam.m_topandtail, 1)
        n_ypixels = np.size(self.reflected_beam.m_topandtail, 2)

        # calculate omega and two_theta depending on the mode.
        mode = self.reflected_beam.mode

        # we'll need the wavelengths to calculate Q.
        wavelengths = self.reflected_beam.m_lambda
        m_twotheta = np.zeros((n_spectra, n_tpixels, n_ypixels))

        detector_z_difference = (self.reflected_beam.detector_z -
                                 self.direct_beam.detector_z)

        beampos_z_difference = (self.reflected_beam.m_beampos -
                                self.direct_beam.m_beampos)

        Y_PIXEL_SPACING = self.reflected_beam.cat.y_pixels_per_mm[0]

        total_z_deflection = (detector_z_difference +
                              beampos_z_difference * Y_PIXEL_SPACING)

        if mode in ['FOC', 'POL', 'POLANAL', 'MT']:
            # omega_nom.shape = (N, )
            omega_nom = np.degrees(
                np.arctan(total_z_deflection / self.reflected_beam.detector_y)
                / 2.)
            '''
            Wavelength specific angle of incidence correction
            This involves:
            1) working out the trajectory of the neutrons through the
            collimation system.
            2) where those neutrons intersect the sample.
            3) working out the elevation of the neutrons when they hit the
            sample.
            4) correcting the angle of incidence.
            '''
            speeds = general.wavelength_velocity(wavelengths)
            collimation_distance = self.reflected_beam.cat.collimation_distance
            s2_sample_distance = (self.reflected_beam.cat.sample_distance -
                                  self.reflected_beam.cat.slit2_distance)

            # work out the trajectories of the neutrons for them to pass
            # through the collimation system.
            trajectories = find_trajectory(collimation_distance / 1000., 0,
                                           speeds)

            # work out where the beam hits the sample
            res = parabola_line_intersection_point(s2_sample_distance / 1000,
                                                   0, trajectories, speeds,
                                                   omega_nom[:, np.newaxis])
            intersect_x, intersect_y, x_prime, elevation = res

            # correct the angle of incidence with a wavelength dependent
            # elevation.
            omega_corrected = omega_nom[:, np.newaxis] - elevation

            m_twotheta += np.arange(n_ypixels * 1.)[np.newaxis, np.newaxis, :]
            m_twotheta -= self.direct_beam.m_beampos[:, np.newaxis, np.newaxis]
            m_twotheta *= Y_PIXEL_SPACING
            m_twotheta += detector_z_difference
            m_twotheta /= (self.reflected_beam.detector_y[:, np.newaxis,
                                                          np.newaxis])
            m_twotheta = np.arctan(m_twotheta)
            m_twotheta = np.degrees(m_twotheta)

            # you may be reflecting upside down, reverse the sign.
            upside_down = np.sign(omega_corrected[:, 0])
            m_twotheta *= upside_down[:, np.newaxis, np.newaxis]
            omega_corrected *= upside_down[:, np.newaxis]

        elif mode in ['SB', 'DB']:
            # the angle of incidence is half the two theta of the reflected
            # beam
            omega = np.arctan(
                total_z_deflection / self.reflected_beam.detector_y) / 2.

            # work out two theta for each of the detector pixels
            m_twotheta += np.arange(n_ypixels * 1.)[np.newaxis, np.newaxis, :]
            m_twotheta -= self.direct_beam.m_beampos[:, np.newaxis, np.newaxis]
            m_twotheta += detector_z_difference
            m_twotheta -= (
                self.reflected_beam.detector_y[:, np.newaxis, np.newaxis] *
                np.tan(omega[:, np.newaxis, np.newaxis]))

            m_twotheta /= (self.reflected_beam.detector_y[:, np.newaxis,
                                                          np.newaxis])
            m_twotheta = np.arctan(m_twotheta)
            m_twotheta += omega[:, np.newaxis, np.newaxis]

            # still in radians at this point
            # add an extra dimension, because omega_corrected needs to be the
            # angle of incidence for each wavelength. I.e. should be
            # broadcastable to (N, T)
            omega_corrected = np.degrees(omega)[:, np.newaxis]
            m_twotheta = np.degrees(m_twotheta)
        '''
        --Specular Reflectivity--
        Use the (constant wavelength) spectra that have already been integrated
        over 2theta (in processnexus) to calculate the specular reflectivity.
        Beware: this is because m_topandtail has already been divided through
        by monitor counts and error propagated (at the end of processnexus).
        Thus, the 2theta pixels are correlated to some degree. If we use the 2D
        plot to calculate reflectivity
        (sum {Iref_{2theta, lambda}}/I_direct_{lambda}) then the error bars in
        the reflectivity turn out much larger than they should be.
        '''
        ydata, ydata_sd = EP.EPdiv(self.reflected_beam.m_spec,
                                   self.reflected_beam.m_spec_sd,
                                   self.direct_beam.m_spec,
                                   self.direct_beam.m_spec_sd)

        # calculate the 1D Qz values.
        xdata = general.q(omega_corrected, wavelengths)
        xdata_sd = (self.reflected_beam.m_lambda_fwhm /
                    self.reflected_beam.m_lambda)**2
        xdata_sd += (self.reflected_beam.domega[:, np.newaxis] /
                     omega_corrected)**2
        xdata_sd = np.sqrt(xdata_sd) * xdata
        '''
        ---Offspecular reflectivity---
        normalise the counts in the reflected beam by the direct beam
        spectrum this gives a reflectivity. Also propagate the errors,
        leaving the fractional variance (dr/r)^2.
        --Note-- that adjacent y-pixels (same wavelength) are correlated in
        this treatment, so you can't just sum over them.
        i.e. (c_0 / d) + ... + c_n / d) != (c_0 + ... + c_n) / d
        '''
        m_ref, m_ref_sd = EP.EPdiv(
            self.reflected_beam.m_topandtail,
            self.reflected_beam.m_topandtail_sd,
            self.direct_beam.m_spec[:, :, np.newaxis],
            self.direct_beam.m_spec_sd[:, :, np.newaxis])

        # you may have had divide by zero's.
        m_ref = np.where(np.isinf(m_ref), 0, m_ref)
        m_ref_sd = np.where(np.isinf(m_ref_sd), 0, m_ref_sd)

        # calculate the Q values for the detector pixels.  Each pixel has
        # different 2theta and different wavelength, ASSUME that they have the
        # same angle of incidence
        qx, qy, qz = general.q2(omega_corrected[:, :, np.newaxis], m_twotheta,
                                0, wavelengths[:, :, np.newaxis])

        reduction = {}
        reduction['x'] = self.x = xdata
        reduction['x_err'] = self.x_err = xdata_sd
        reduction['y'] = self.y = ydata / scale
        reduction['y_err'] = self.y_err = ydata_sd / scale
        reduction['omega'] = omega_corrected
        reduction['m_twotheta'] = m_twotheta
        reduction['m_ref'] = self.m_ref = m_ref
        reduction['m_ref_err'] = self.m_ref_err = m_ref_sd
        reduction['qz'] = self.m_qz = qz
        reduction['qx'] = self.m_qx = qx
        reduction['nspectra'] = self.n_spectra = n_spectra
        reduction['start_time'] = self.reflected_beam.start_time
        reduction['datafile_number'] = self.datafile_number = (
            self.reflected_beam.datafile_number)

        fnames = []
        datasets = []
        datafilename = self.reflected_beam.datafilename
        datafilename = os.path.basename(datafilename.split('.nx.hdf')[0])

        for i in range(n_spectra):
            data_tup = self.data(scanpoint=i)
            datasets.append(ReflectDataset(data_tup))

        if self.save:
            for i, dataset in enumerate(datasets):
                fname = '{0}_{1}.dat'.format(datafilename, i)
                fnames.append(fname)
                with open(fname, 'wb') as f:
                    dataset.save(f)

                fname = '{0}_{1}.xml'.format(datafilename, i)
                with open(fname, 'wb') as f:
                    dataset.save_xml(f, start_time=reduction['start_time'][i])

        reduction['fname'] = fnames
        return datasets, deepcopy(reduction)
예제 #5
0
파일: reduce.py 프로젝트: llimeht/refnx
    def _reduce_single_angle(self, scale=1):
        """
        Reduce a single angle.
        """
        n_spectra = self.reflected_beam.n_spectra
        n_tpixels = np.size(self.reflected_beam.m_topandtail, 1)
        n_ypixels = np.size(self.reflected_beam.m_topandtail, 2)

        # calculate omega and two_theta depending on the mode.
        mode = self.reflected_beam.mode

        # we'll need the wavelengths to calculate Q.
        wavelengths = self.reflected_beam.m_lambda
        m_twotheta = np.zeros((n_spectra, n_tpixels, n_ypixels))

        if mode in ['FOC', 'POL', 'POLANAL', 'MT']:
            detector_z_difference = (self.reflected_beam.detector_z -
                                     self.direct_beam.detector_z)
            beampos_z_difference = (self.reflected_beam.m_beampos
                                    - self.direct_beam.m_beampos)

            total_z_deflection = (detector_z_difference
                                  + beampos_z_difference * Y_PIXEL_SPACING)

            # omega_nom.shape = (N, )
            omega_nom = np.degrees(np.arctan(total_z_deflection
                                   / self.reflected_beam.detector_y) / 2.)

            '''
            Wavelength specific angle of incidence correction
            This involves:
            1) working out the trajectory of the neutrons through the
            collimation system.
            2) where those neutrons intersect the sample.
            3) working out the elevation of the neutrons when they hit the
            sample.
            4) correcting the angle of incidence.
            '''
            speeds = general.wavelength_velocity(wavelengths)
            collimation_distance = self.reflected_beam.cat.collimation_distance
            s2_sample_distance = (self.reflected_beam.cat.sample_distance
                                  - self.reflected_beam.cat.slit2_distance)

            # work out the trajectories of the neutrons for them to pass
            # through the collimation system.
            trajectories = pm.find_trajectory(collimation_distance / 1000.,
                                              0, speeds)
            
            # work out where the beam hits the sample
            res = pm.parabola_line_intersection_point(s2_sample_distance / 1000,
                                                      0,
                                                      trajectories,
                                                      speeds,
                                                      omega_nom[:, np.newaxis])
            intersect_x, intersect_y, x_prime, elevation = res

            # correct the angle of incidence with a wavelength dependent
            # elevation.
            omega_corrected = omega_nom[:, np.newaxis] - elevation

        elif mode == 'SB' or mode == 'DB':
            omega = self.reflected_beam.M_beampos + self.reflected_beam.detectorZ[:, np.newaxis]
            omega -= self.direct_beam.M_beampos + self.direct_beam.detectorZ
            omega /= 2 * self.reflected_beam.detectorY[:, np.newaxis, np.newaxis]
            omega = np.arctan(omega)

            m_twotheta += np.arange(n_ypixels * 1.)[np.newaxis, np.newaxis, :] * Y_PIXEL_SPACING
            m_twotheta += self.reflected_beam.detectorZ[:, np.newaxis, np.newaxis]
            m_twotheta -= self.direct_beam.M_beampos[:, :, np.newaxis] + self.direct_beam.detectorZ
            m_twotheta -= self.reflected_beam.detectorY[:, np.newaxis, np.newaxis] * np.tan(omega[:, :, np.newaxis])

            m_twotheta /= self.reflected_beam.detectorY[:, np.newaxis, np.newaxis]
            m_twotheta = np.arctan(m_twotheta)
            m_twotheta += omega[:, :, np.newaxis]

        '''
        --Specular Reflectivity--
        Use the (constant wavelength) spectra that have already been integrated
        over 2theta (in processnexus) to calculate the specular reflectivity.
        Beware: this is because m_topandtail has already been divided through
        by monitor counts and error propagated (at the end of processnexus).
        Thus, the 2theta pixels are correlated to some degree. If we use the 2D
        plot to calculate reflectivity
        (sum {Iref_{2theta, lambda}}/I_direct_{lambda}) then the error bars in
        the reflectivity turn out much larger than they should be.
        '''
        ydata, ydata_sd = EP.EPdiv(self.reflected_beam.m_spec,
                                   self.reflected_beam.m_spec_sd,
                                   self.direct_beam.m_spec,
                                   self.direct_beam.m_spec_sd)

        # calculate the 1D Qz values.
        xdata = general.q(omega_corrected, wavelengths)
        xdata_sd = (self.reflected_beam.m_lambda_fwhm
                    / self.reflected_beam.m_lambda) ** 2
        xdata_sd += (self.reflected_beam.domega[:, np.newaxis]
                     / omega_corrected) ** 2
        xdata_sd = np.sqrt(xdata_sd) * xdata

        '''
        ---Offspecular reflectivity---
        normalise the counts in the reflected beam by the direct beam
        spectrum this gives a reflectivity. Also propagate the errors,
        leaving the fractional variance (dr/r)^2.
        --Note-- that adjacent y-pixels (same wavelength) are correlated in this
        treatment, so you can't just sum over them.
        i.e. (c_0 / d) + ... + c_n / d) != (c_0 + ... + c_n) / d
        '''
        m_ref, m_ref_sd = EP.EPdiv(self.reflected_beam.m_topandtail,
                                   self.reflected_beam.m_topandtail_sd,
                                   self.direct_beam.m_spec[:, :, np.newaxis],
                                   self.direct_beam.m_spec_sd[:, :, np.newaxis])

        # you may have had divide by zero's.
        m_ref = np.where(np.isinf(m_ref), 0, m_ref)
        m_ref_sd = np.where(np.isinf(m_ref_sd), 0, m_ref_sd)

        # calculate the Q values for the detector pixels.  Each pixel has
        # different 2theta and different wavelength, ASSUME that they have the
        # same angle of incidence
        qx, qy, qz = general.q2(omega_corrected[:, :, np.newaxis],
                                m_twotheta,
                                0,
                                wavelengths[:, :, np.newaxis])

        reduction = {}
        reduction['xdata'] = self.xdata = xdata
        reduction['xdata_sd'] = self.xdata_sd = xdata_sd
        reduction['ydata'] = self.ydata = ydata
        reduction['ydata_sd'] = self.ydata_sd = ydata_sd
        reduction['m_ref'] = self.m_ref = m_ref
        reduction['m_ref_sd'] = self.m_ref_sd = m_ref_sd
        reduction['qz'] = self.m_qz = qz
        reduction['qy'] = self.m_qy = qy
        reduction['nspectra'] = self.n_spectra = n_spectra
        reduction['datafile_number'] = self.datafile_number = (
            self.reflected_beam.datafile_number)

        fnames = []
        if self.save:
            for i in range(n_spectra):
                data_tup = self.data(scanpoint=i)
                dataset = ReflectDataset(data_tup)
                fname = 'PLP{0:07d}_{1}.dat'.format(self.datafile_number, i)
                fnames.append(fname)
                with open(fname, 'wb') as f:
                    dataset.save(f)
                fname = 'PLP{0:07d}_{1}.xml'.format(self.datafile_number, i)
                with open(fname, 'wb') as f:
                    dataset.save_xml(f)

        reduction['fname'] = fnames
        return deepcopy(reduction)
예제 #6
0
    def sample(self, samples, random_state=None):
        """
        Sample the beam for reflected signal.

        2400000 samples roughly corresponds to 1200 sec of *PLATYPUS* using
        dlambda=3.3 and dtheta=3.3 at angle=0.65.
        150000000 samples roughly corresponds to 3600 sec of *PLATYPUS* using
        dlambda=3.3 and dtheta=3.3 at angle=3.0.

        (The sample number <--> actual acquisition time correspondence has
         not been checked fully)

        Parameters
        ----------
        samples: int
            How many samples to run.
        random_state: {int, `~np.random.RandomState`, `~np.random.Generator`}, optional
        If `random_state` is not specified the
        `~np.random.RandomState` singleton is used.
        If `random_state` is an int, a new ``RandomState`` instance is used,
        seeded with seed.
        If `random_state` is already a ``RandomState`` or a ``Generator``
        instance, then that object is used.
        Specify `random_state` for repeatable minimizations.
        """
        # grab a random number generator
        rng = check_random_state(random_state)

        # generate neutrons of various wavelengths
        wavelengths = self.spectrum_dist.rvs(size=samples, random_state=rng)

        # generate neutrons of different angular divergence
        angles = self.angular_dist.rvs(samples, random_state=rng) + self.angle

        # angular deviation due to gravity
        # --> no correction for gravity affecting width of angular resolution
        if self.gravity:
            speeds = general.wavelength_velocity(wavelengths)
            # trajectories through slits for different wavelengths
            trajectories = pm.find_trajectory(self.L12 / 1000.0, 0, speeds)
            # elevation at sample
            elevations = pm.elevation(
                trajectories, speeds, (self.L12 + self.L2S) / 1000.0
            )
            angles -= elevations

        # calculate Q
        q = general.q(angles, wavelengths)

        # calculate reflectivities for a neutron of a given Q.
        # the angular resolution smearing has already been done. The wavelength
        # resolution smearing follows.
        r = self.model(q, x_err=0.0)

        # accept or reject neutrons based on the reflectivity of
        # sample at a given Q.
        criterion = rng.uniform(size=samples)
        accepted = criterion < r

        # implement wavelength smearing from choppers. Jitter the wavelengths
        # by a uniform distribution whose full width is dlambda / 0.68.
        if self.force_gaussian:
            noise = rng.standard_normal(size=samples)
            jittered_wavelengths = wavelengths * (
                1 + self.dlambda / 2.3548 * noise
            )
        else:
            noise = rng.uniform(-0.5, 0.5, size=samples)
            jittered_wavelengths = wavelengths * (
                1 + self.dlambda / 0.68 * noise
            )

        # update reflected beam counts. Rebin smearing
        # is taken into account due to the finite size of the wavelength
        # bins.
        hist = np.histogram(
            jittered_wavelengths[accepted], self.wavelength_bins
        )
        self.reflected_beam += hist[0]
        self.bmon_reflect += float(samples)

        # update resolution kernel. If we have more than 100000 in all
        # bins skip
        if (
            len(self._res_kernel)
            and np.min([len(v) for v in self._res_kernel.values()]) > 500000
        ):
            return

        bin_loc = np.digitize(jittered_wavelengths, self.wavelength_bins)
        for i in range(1, len(self.wavelength_bins)):
            # extract q values that fall in each wavelength bin
            q_for_bin = np.copy(q[bin_loc == i])
            q_samples_so_far = self._res_kernel.get(i - 1, np.array([]))
            updated_samples = np.concatenate((q_samples_so_far, q_for_bin))

            # no need to keep double precision for these sample arrays
            self._res_kernel[i - 1] = updated_samples.astype(np.float32)
예제 #7
0
    def __init__(
        self,
        model,
        angle,
        L12=2859,
        footprint=60,
        L2S=120,
        dtheta=3.3,
        lo_wavelength=2.8,
        hi_wavelength=18,
        dlambda=3.3,
        rebin=2,
        gravity=False,
        force_gaussian=False,
        force_uniform_wavelength=False,
    ):
        self.model = model

        self.bkg = model.bkg.value
        self.angle = angle

        # dlambda refers to the FWHM of the gaussian approximation to a uniform
        # distribution. The full width of the uniform distribution is
        # dlambda/0.68.
        self.dlambda = dlambda / 100.0
        # the rebin percentage refers to the full width of the bins. You have to
        # multiply this value by 0.68 to get the equivalent contribution to the
        # resolution function.
        self.rebin = rebin / 100.0
        self.wavelength_bins = calculate_wavelength_bins(
            lo_wavelength, hi_wavelength, rebin
        )
        bin_centre = 0.5 * (
            self.wavelength_bins[1:] + self.wavelength_bins[:-1]
        )

        # angular deviation due to gravity
        # --> no correction for gravity affecting width of angular resolution
        elevations = 0
        if gravity:
            speeds = general.wavelength_velocity(bin_centre)
            # trajectories through slits for different wavelengths
            trajectories = pm.find_trajectory(L12 / 1000.0, 0, speeds)
            # elevation at sample
            elevations = pm.elevation(
                trajectories, speeds, (L12 + L2S) / 1000.0
            )

        # nominal Q values
        self.q = general.q(angle - elevations, bin_centre)

        # keep a tally of the direct and reflected beam
        self.direct_beam = np.zeros((self.wavelength_bins.size - 1))
        self.reflected_beam = np.zeros((self.wavelength_bins.size - 1))

        # beam monitor counts for normalisation
        self.bmon_direct = 0
        self.bmon_reflect = 0

        self.gravity = gravity

        # wavelength generator
        self.force_uniform_wavelength = force_uniform_wavelength
        if force_uniform_wavelength:
            self.spectrum_dist = uniform(
                loc=lo_wavelength - 1, scale=hi_wavelength - lo_wavelength + 1
            )
        else:
            a = PN("PLP0000711.nx.hdf")
            q, i, di = a.process(
                normalise=False,
                normalise_bins=False,
                rebin_percent=0.5,
                lo_wavelength=max(0, lo_wavelength - 1),
                hi_wavelength=hi_wavelength + 1,
            )
            q = q.squeeze()
            i = i.squeeze()
            self.spectrum_dist = SpectrumDist(q, i)

        self.force_gaussian = force_gaussian

        # angular resolution generator, based on a trapezoidal distribution
        # The slit settings are the optimised set typically used in an
        # experiment. dtheta/theta refers to the FWHM of a Gaussian
        # approximation to a trapezoid.

        # stores the q vectors contributing towards each datapoint
        self._res_kernel = {}
        self._min_samples = 0

        self.dtheta = dtheta / 100.0
        self.footprint = footprint
        self.angle = angle
        self.L2S = L2S
        self.L12 = L12
        s1, s2 = general.slit_optimiser(
            footprint,
            self.dtheta,
            angle=angle,
            L2S=L2S,
            L12=L12,
            verbose=False,
        )
        div, alpha, beta = general.div(s1, s2, L12=L12)
        self.div, self.s1, self.s2 = s1, s2, div

        if force_gaussian:
            self.angular_dist = norm(scale=div / 2.3548)
        else:
            self.angular_dist = trapz(
                c=(alpha - beta) / 2.0 / alpha,
                d=(alpha + beta) / 2.0 / alpha,
                loc=-alpha,
                scale=2 * alpha,
            )
예제 #8
0
 def test_wavelength_velocity(self):
     speed = general.wavelength_velocity(20.)
     assert_almost_equal(speed, 197.8017006541796, 5)
예제 #9
0
파일: test_general.py 프로젝트: refnx/refnx
 def test_wavelength_velocity(self):
     speed = general.wavelength_velocity(20.)
     assert_almost_equal(speed, 197.8017006541796, 5)
예제 #10
0
    def process(
        self,
        h5norm=None,
        lo_wavelength=2.5,
        hi_wavelength=19.0,
        background=True,
        direct=False,
        omega=None,
        twotheta=None,
        rebin_percent=1.0,
        wavelength_bins=None,
        normalise=True,
        integrate=-1,
        eventmode=None,
        peak_pos=None,
        background_mask=None,
        normalise_bins=True,
        **kwds
    ):
        """
        Processes the ProcessNexus object to produce a time of flight spectrum.
        The processed spectrum is stored in the `processed_spectrum` attribute.
        The specular spectrum is also returned from this function.

        Parameters
        ----------
        h5norm : HDF5 NeXus file
            The hdf5 file containing the floodfield data.
        lo_wavelength : float
            The low wavelength cutoff for the rebinned data (A).
        hi_wavelength : float
            The high wavelength cutoff for the rebinned data (A).
        background : bool
            Should a background subtraction be carried out?
        direct : bool
            Is it a direct beam you measured? This is so a gravity correction
            can be applied.
        omega : float
            Expected angle of incidence of beam. If this is None, then the
            rough angle of incidence is obtained from the NeXus file.
        twotheta : float
            Expected two theta value of specular beam. If this is None then
            the rough angle of incidence is obtained from the NeXus file.
        rebin_percent : float
            Specifies the rebinning percentage for the spectrum.  If
            `rebin_percent is None`, then no rebinning is done.
        wavelength_bins : array_like
            The wavelength bins for rebinning.  If `wavelength_bins is not
             None` then the `rebin_percent` parameter is ignored.
        normalise : bool
            Normalise by the monitor counts.
        integrate : int

            - integrate == -1
                the spectrum is integrated over all the scanpoints.
            - integrate >= 0
              the individual spectra are calculated individually.
              If `eventmode is not None` then integrate specifies which
              scanpoint to examine.

        eventmode : None or array_like
            If eventmode is `None` then the integrated detector image is used.
            If eventmode is an array then the array specifies the integration
            times (in seconds) for the detector image, e.g. [0, 20, 30] would
            result in two spectra. The first would contain data for 0 s to 20s,
            the second would contain data for 20 s to 30 s.  This option can
            only be used when `integrate >= -1`.
            If eventmode has zero length (e.g. []), then a single time interval
            for the entire acquisition is used, [0, acquisition_time].  This
            would source the image from the eventmode file, rather than the
            NeXUS file.
        peak_pos : None or (float, float)
            Specifies the peak position and peak standard deviation to use.
        background_mask : array_like
            An array of bool that specifies which y-pixels to use for
            background subtraction.  Should be the same length as the number of
            y pixels in the detector image.  Otherwise an automatic mask is
            applied (if background is True).
        normalise_bins : bool
            Divides the intensity in each wavelength bin by the width of the
            bin. This allows one to compare spectra even if they were processed
            with different rebin percentages.

        Notes
        -----
        After processing this object contains the following the following
        attributes:

        - path - path to the data file
        - datafilename - name of the datafile
        - datafile_number - datafile number.
        - m_topandtail - the corrected 2D detector image, (n_spectra, TOF, Y)
        - m_topandtail_sd - corresponding standard deviations
        - n_spectra - number of spectra in processed data
        - bm1_counts - beam montor counts, (n_spectra,)
        - m_spec - specular intensity, (n_spectra, TOF)
        - m_spec_sd - corresponding standard deviations
        - m_beampos - beam_centre for each spectrum, (n_spectra, )
        - m_lambda - wavelengths for each spectrum, (n_spectra, TOF)
        - m_lambda_fwhm - corresponding FWHM of wavelength distribution
        - m_lambda_hist - wavelength bins for each spectrum, (n_spectra, TOF)
        - m_spec_tof - TOF for each wavelength bin, (n_spectra, TOF)
        - mode - the Platypus mode, e.g. FOC/MT/POL/POLANAL/SB/DB
        - detector_z - detector height, (n_spectra, )
        - detector_y - sample-detector distance, (n_spectra, )
        - domega - collimation uncertainty
        - lopx - lowest extent of specular beam (in y pixels), (n_spectra, )
        - hipx - highest extent of specular beam (in y pixels), (n_spectra, )

        Returns
        -------
        m_lambda, m_spec, m_spec_sd: np.ndarray
            Arrays containing the wavelength, specular intensity as a function
            of wavelength, standard deviation of specular intensity
        """
        cat = self.cat

        scanpoint = 0

        # beam monitor counts for normalising data
        bm1_counts = cat.bm1_counts.astype("float64")

        # TOF bins
        TOF = cat.t_bins.astype("float64")

        # This section controls how multiple detector images are handled.
        # We want event streaming.
        if eventmode is not None:
            scanpoint = integrate
            if integrate == -1:
                scanpoint = 0

            output = self.process_event_stream(scanpoint=scanpoint, frame_bins=eventmode)
            frame_bins, detector, bm1_counts = output

        else:
            # we don't want detector streaming
            detector = cat.detector
            scanpoint = 0

            # integrate over all spectra
            if integrate == -1:
                detector = np.sum(detector, 0)[np.newaxis,]
                bm1_counts[:] = np.sum(bm1_counts)

        n_spectra = np.size(detector, 0)

        # Up until this point detector.shape=(N, T, Y,
        # pre-average over x, leaving (n, t, y) also convert to dp
        detector = np.sum(detector, axis=3, dtype="float64")

        # detector shape should now be (n, t, y)
        # calculate the counting uncertainties
        detector_sd = np.sqrt(detector)
        bm1_counts_sd = np.sqrt(bm1_counts)

        # detector normalisation with a water file
        if h5norm:
            x_bins = cat.x_bins[scanpoint]
            # shape (y,)
            detector_norm, detector_norm_sd = create_detector_norm(h5norm, x_bins[0], x_bins[1])
            # detector has shape (N, T, Y), shape of detector_norm should
            # broadcast to (1, 1, y)
            # TODO: Correlated Uncertainties?
            detector, detector_sd = EP.EPdiv(detector, detector_sd, detector_norm, detector_norm_sd)

        # shape of these is (n_spectra, TOFbins)
        m_spec_tof_hist = np.zeros((n_spectra, np.size(TOF, 0)), dtype="float64")
        m_lambda_hist = np.zeros((n_spectra, np.size(TOF, 0)), dtype="float64")
        m_spec_tof_hist[:] = TOF

        """
        chopper to detector distances
        note that if eventmode is specified the n_spectra is NOT
        equal to the number of entries in e.g. /longitudinal_translation
        this means you have to copy values in from the correct scanpoint
        """
        flight_distance = np.zeros(n_spectra, dtype="float64")
        d_cx = np.zeros(n_spectra, dtype="float64")
        detpositions = np.zeros(n_spectra, dtype="float64")

        # The angular divergence of the instrument
        domega = np.zeros(n_spectra, dtype="float64")

        phase_angle = np.zeros(n_spectra, dtype="float64")

        # process each of the spectra taken in the detector image
        originalscanpoint = scanpoint
        for idx in range(n_spectra):
            freq = cat.frequency[scanpoint]

            # calculate the angular divergence
            domega[idx] = general.div(
                cat.ss2vg[scanpoint], cat.ss3vg[scanpoint], (cat.slit3_distance[0] - cat.slit2_distance[0])
            )[0]

            """
            work out the total flight length
            IMPORTANT: this varies as a function of twotheta. This is
            because the Platypus detector does not move on an arc.
            At high angles chod can be ~ 0.75% different. This is will
            visibly shift fringes.
            """
            if omega is None:
                omega = cat.omega[scanpoint]
            if twotheta is None:
                twotheta = cat.twotheta[scanpoint]
            output = self.chod(omega, twotheta, scanpoint=scanpoint)
            flight_distance[idx], d_cx[idx] = output

            # calculate phase openings
            output = self.phase_angle(scanpoint)
            phase_angle[scanpoint], master_opening = output

            """
            toffset - the time difference between the magnet pickup on the
            choppers (TTL pulse), which is situated in the middle of the
            chopper window, and the trailing edge of chopper 1, which is
            supposed to be time0.  However, if there is a phase opening this
            time offset has to be relocated slightly, as time0 is not at the
            trailing edge.
            """
            poff = cat.chopper1_phase_offset[0]
            poffset = 1.0e6 * poff / (2.0 * 360.0 * freq)
            toffset = (
                poffset
                + 1.0e6 * master_opening / 2 / (2 * np.pi) / freq
                - 1.0e6 * phase_angle[scanpoint] / (360 * 2 * freq)
            )
            m_spec_tof_hist[idx] -= toffset

            detpositions[idx] = cat.dy[scanpoint]

            if eventmode is not None:
                m_spec_tof_hist[:] = TOF - toffset
                flight_distance[:] = flight_distance[0]
                detpositions[:] = detpositions[0]
                break
            else:
                scanpoint += 1

        scanpoint = originalscanpoint

        # convert TOF to lambda
        # m_spec_tof_hist (n, t) and chod is (n,)
        m_lambda_hist = general.velocity_wavelength(1.0e3 * flight_distance[:, np.newaxis] / m_spec_tof_hist)

        m_lambda = 0.5 * (m_lambda_hist[:, 1:] + m_lambda_hist[:, :-1])
        TOF -= toffset

        # gravity correction if direct beam
        if direct:
            # TODO: Correlated Uncertainties?
            output = correct_for_gravity(
                detector,
                detector_sd,
                m_lambda,
                self.cat.collimation_distance,
                self.cat.dy,
                lo_wavelength,
                hi_wavelength,
            )
            detector, detector_sd, m_gravcorrcoefs = output
            beam_centre, beam_sd = find_specular_ridge(detector, detector_sd)
            # beam_centre = m_gravcorrcoefs
        else:
            beam_centre, beam_sd = find_specular_ridge(detector, detector_sd)

        # you want to specify the specular ridge on the averaged detector image
        if peak_pos is not None:
            beam_centre = np.ones(n_spectra) * peak_pos[0]
            beam_sd = np.ones(n_spectra) * peak_pos[1]

        """
        Rebinning in lambda for all detector
        Rebinning is the default option, but sometimes you don't want to.
        detector shape input is (n, t, y)
        """
        if wavelength_bins is not None:
            rebinning = wavelength_bins
        elif 0.0 < rebin_percent < 15.0:
            rebinning = calculate_wavelength_bins(lo_wavelength, hi_wavelength, rebin_percent)

        # rebin_percent percentage is zero. No rebinning, just cutoff
        # wavelength
        else:
            rebinning = m_lambda_hist[0, :]
            rebinning = rebinning[np.searchsorted(rebinning, lo_wavelength) : np.searchsorted(rebinning, hi_wavelength)]

        """
        now do the rebinning for all the N detector images
        rebin.rebinND could do all of these at once.  However, m_lambda_hist
        could vary across the range of spectra.  If it was the same I could
        eliminate the loop.
        """
        output = []
        output_sd = []
        for idx in range(n_spectra):
            # TODO: Correlated Uncertainties?
            plane, plane_sd = rebin.rebin_along_axis(
                detector[idx], m_lambda_hist[idx], rebinning, y1_sd=detector_sd[idx]
            )
            output.append(plane)
            output_sd.append(plane_sd)

        detector = np.array(output)
        detector_sd = np.array(output_sd)

        if len(detector.shape) == 2:
            detector = detector[np.newaxis,]
            detector_sd = detector_sd[np.newaxis,]

        # (1, T)
        m_lambda_hist = np.atleast_2d(rebinning)

        """
        Divide the detector intensities by the width of the wavelength bin.
        This is so the intensities between different rebinning strategies can
        be compared.
        """
        if normalise_bins:
            div = 1 / np.ediff1d(m_lambda_hist[0])[:, np.newaxis]
            detector, detector_sd = EP.EPmulk(detector, detector_sd, div)

        # convert the wavelength base to a timebase
        m_spec_tof_hist = 0.001 * flight_distance[:, np.newaxis] / general.wavelength_velocity(m_lambda_hist)

        m_lambda = 0.5 * (m_lambda_hist[:, 1:] + m_lambda_hist[:, :-1])

        m_spec_tof = 0.001 * flight_distance[:, np.newaxis] / general.wavelength_velocity(m_lambda)

        # we want to integrate over the following pixel region
        lopx = np.floor(beam_centre - beam_sd * EXTENT_MULT).astype("int")
        hipx = np.ceil(beam_centre + beam_sd * EXTENT_MULT).astype("int")

        m_spec = np.zeros((n_spectra, np.size(detector, 1)))
        m_spec_sd = np.zeros_like(m_spec)

        # background subtraction
        if background:
            if background_mask is not None:
                # background_mask is (Y), need to make 3 dimensional (N, T, Y)
                # first make into (T, Y)
                backgnd_mask = np.repeat(background_mask[np.newaxis, :], detector.shape[1], axis=0)
                # make into (N, T, Y)
                full_backgnd_mask = np.repeat(backgnd_mask[np.newaxis, :], n_spectra, axis=0)
            else:
                # there may be different background regions for each spectrum
                # in the file
                y1 = np.round(lopx - PIXEL_OFFSET).astype("int")
                y0 = np.round(y1 - (EXTENT_MULT * beam_sd)).astype("int")

                y2 = np.round(hipx + PIXEL_OFFSET).astype("int")
                y3 = np.round(y2 + (EXTENT_MULT * beam_sd)).astype("int")

                full_backgnd_mask = np.zeros_like(detector, dtype="bool")
                for i in range(n_spectra):
                    full_backgnd_mask[i, :, y0[i] : y1[i]] = True
                    full_backgnd_mask[i, :, y2[i] + 1 : y3[i] + 1] = True

            # TODO: Correlated Uncertainties?
            detector, detector_sd = background_subtract(detector, detector_sd, full_backgnd_mask)

        """
        top and tail the specular beam with the known beam centres.
        All this does is produce a specular intensity with shape (N, T),
        i.e. integrate over specular beam
        """
        for i in range(n_spectra):
            m_spec[i] = np.sum(detector[i, :, lopx[i] : hipx[i] + 1], axis=1)
            sd = np.sum(detector_sd[i, :, lopx[i] : hipx[i] + 1] ** 2, axis=1)
            m_spec_sd[i] = np.sqrt(sd)

        # assert np.isfinite(m_spec).all()
        # assert np.isfinite(m_specSD).all()
        # assert np.isfinite(detector).all()
        # assert np.isfinite(detectorSD).all()

        # normalise by beam monitor 1.
        if normalise:
            m_spec, m_spec_sd = EP.EPdiv(m_spec, m_spec_sd, bm1_counts[:, np.newaxis], bm1_counts_sd[:, np.newaxis])

            output = EP.EPdiv(
                detector, detector_sd, bm1_counts[:, np.newaxis, np.newaxis], bm1_counts_sd[:, np.newaxis, np.newaxis]
            )
            detector, detector_sd = output

        """
        now work out dlambda/lambda, the resolution contribution from
        wavelength.
        van Well, Physica B,  357(2005) pp204-207), eqn 4.
        this is only an approximation for our instrument, as the 2nd and 3rd
        discs have smaller openings compared to the master chopper.
        Therefore the burst time needs to be looked at.
        """
        tau_da = m_spec_tof_hist[:, 1:] - m_spec_tof_hist[:, :-1]

        m_lambda_fwhm = general.resolution_double_chopper(
            m_lambda,
            z0=d_cx[:, np.newaxis] / 1000.0,
            freq=cat.frequency[:, np.newaxis],
            L=flight_distance[:, np.newaxis] / 1000.0,
            H=cat.ss2vg[originalscanpoint] / 1000.0,
            xsi=phase_angle[:, np.newaxis],
            tau_da=tau_da,
        )

        m_lambda_fwhm *= m_lambda

        # put the detector positions and mode into the dictionary as well.
        detector_z = cat.dz
        detector_y = cat.dy
        mode = cat.mode

        d = dict()
        d["path"] = cat.path
        d["datafilename"] = cat.filename
        d["datafile_number"] = cat.datafile_number

        if h5norm is not None:
            d["normfilename"] = h5norm.filename
        d["m_topandtail"] = detector
        d["m_topandtail_sd"] = detector_sd
        d["n_spectra"] = n_spectra
        d["bm1_counts"] = bm1_counts
        d["m_spec"] = m_spec
        d["m_spec_sd"] = m_spec_sd
        d["m_beampos"] = beam_centre
        d["m_lambda"] = m_lambda
        d["m_lambda_fwhm"] = m_lambda_fwhm
        d["m_lambda_hist"] = m_lambda_hist
        d["m_spec_tof"] = m_spec_tof
        d["mode"] = mode
        d["detector_z"] = detector_z
        d["detector_y"] = detector_y
        d["domega"] = domega
        d["lopx"] = lopx
        d["hipx"] = hipx

        self.processed_spectrum = d
        return m_lambda, m_spec, m_spec_sd
예제 #11
0
def correct_for_gravity(detector, detector_sd, lamda, coll_distance, sample_det, lo_wavelength, hi_wavelength, theta=0):
    """
    Returns a gravity corrected yt plot, given the data, its associated errors,
    the wavelength corresponding to each of the time bins, and the trajectory
    of the neutrons. Low lambda and high Lambda are wavelength cutoffs to
    ignore.

    Parameters
    ----------
    detector : np.ndarray
        Detector image. Has shape (N, T, Y)
    detector_sd : np.ndarray
        Standard deviations of detector image
    lamda : np.ndarray
        Wavelengths corresponding to the detector image, has shape (N, T)
    coll_distance : float
        Collimation distance between slits, mm
    sample_det : float
        Sample - detector distance, mm
    lo_wavelength : float
        Low wavelength cut off, Angstrom
    hi_wavelength : float
        High wavelength cutoff, Angstrom
    theta : float
        Angle between second collimation slit, first collimation slit, and
        horizontal

    Returns
    -------
    corrected_data, corrected_data_sd, m_gravcorrcoefs :
                    np.ndarray, np.ndarray, np.ndarray
        Corrected image. This is a theoretical prediction where the spectral
        ridge is for each wavelength.  This will be used to calculate the
        actual angle of incidence in the reduction process.

    """
    num_lambda = np.size(lamda, axis=1)

    x_init = np.arange((np.size(detector, axis=2) + 1) * 1.0) - 0.5

    m_gravcorrcoefs = np.zeros((np.size(detector, 0)), dtype="float64")

    corrected_data = np.zeros_like(detector)
    corrected_data_sd = np.zeros_like(detector)

    for spec in range(np.size(detector, 0)):
        neutron_speeds = general.wavelength_velocity(lamda[spec])
        trajectories = pm.find_trajectory(coll_distance / 1000.0, theta, neutron_speeds)
        travel_distance = (coll_distance + sample_det[spec]) / 1000.0

        # centres(t,)
        # TODO, don't use centroids, use Gaussian peak
        centroids = np.apply_along_axis(ut.centroid, 1, detector[spec])
        lopx = np.searchsorted(lamda[spec], lo_wavelength)
        hipx = np.searchsorted(lamda[spec], hi_wavelength)

        def f(tru_centre):
            deflections = pm.y_deflection(trajectories[lopx:hipx], neutron_speeds[lopx:hipx], travel_distance)

            model = 1000.0 * deflections / Y_PIXEL_SPACING + tru_centre
            diff = model - centroids[lopx:hipx, 0]
            diff = diff[~np.isnan(diff)]
            return diff

        # find the beam centre for an infinitely fast neutron
        x0 = np.array([np.nanmean(centroids[lopx:hipx, 0])])
        res = leastsq(f, x0)
        m_gravcorrcoefs[spec] = res[0][0]

        total_deflection = 1000.0 * pm.y_deflection(trajectories, neutron_speeds, travel_distance)
        total_deflection /= Y_PIXEL_SPACING

        x_rebin = x_init.T + total_deflection[:, np.newaxis]
        for wavelength in range(np.size(detector, axis=1)):
            output = rebin.rebin(
                x_init, detector[spec, wavelength], x_rebin[wavelength], y1_sd=detector_sd[spec, wavelength]
            )

            corrected_data[spec, wavelength] = output[0]
            corrected_data_sd[spec, wavelength] = output[1]

    return corrected_data, corrected_data_sd, m_gravcorrcoefs