def max_p(X, w, threshold_variable="count", threshold=10, **kwargs): """Max-p clustering algorithm :cite:`Duque2012` Parameters ---------- X : array-like n x k attribute data w : PySAL W instance spatial weights matrix threshold_variable : str, default:"count" attribute variable to use as floor when calculate threshold : int, default:10 integer that defines the upper limit of a variable that can be grouped into a single region Returns ------- model: region MaxPRegionsHeu instance """ model = MaxPRegionsHeu() model.fit_from_w(w, X.values, threshold_variable, threshold) return model
def test_w_multi_attr(): print(double_threshold) cluster_object = MaxPRegionsHeu() cluster_object.fit_from_w(w, double_attr, double_spatially_extensive_attr, threshold=double_threshold) result = region_list_from_array(cluster_object.labels_) compare_region_lists(result, optimal_clustering)
def test_w_multi_attr(): print(double_threshold) cluster_object = MaxPRegionsHeu(random_state=0) cluster_object.fit_from_w(w, double_attr, double_spatially_extensive_attr, threshold=double_threshold) result = region_list_from_array(cluster_object.labels_) compare_region_lists(result, optimal_clustering)
def test_w_basic(): cluster_object = MaxPRegionsHeu(random_state=0) cluster_object.fit_from_w(w, attr, spatially_extensive_attr, threshold=threshold) result = region_list_from_array(cluster_object.labels_) compare_region_lists(result, optimal_clustering)