예제 #1
0
def max_p(X, w, threshold_variable="count", threshold=10, **kwargs):
    """Max-p clustering algorithm
    :cite:`Duque2012`

    Parameters
    ----------
    X : array-like
         n x k attribute data

    w : PySAL W instance
        spatial weights matrix

    threshold_variable : str, default:"count"
        attribute variable to use as floor when calculate

    threshold : int, default:10
        integer that defines the upper limit of a variable that can be grouped
        into a single region


    Returns
    -------
    model: region MaxPRegionsHeu instance

    """
    model = MaxPRegionsHeu()
    model.fit_from_w(w, X.values, threshold_variable, threshold)
    return model
예제 #2
0
def test_w_multi_attr():
    print(double_threshold)
    cluster_object = MaxPRegionsHeu()
    cluster_object.fit_from_w(w, double_attr, double_spatially_extensive_attr,
                              threshold=double_threshold)
    result = region_list_from_array(cluster_object.labels_)
    compare_region_lists(result, optimal_clustering)
예제 #3
0
def test_w_multi_attr():
    print(double_threshold)
    cluster_object = MaxPRegionsHeu(random_state=0)
    cluster_object.fit_from_w(w, double_attr, double_spatially_extensive_attr,
                              threshold=double_threshold)
    result = region_list_from_array(cluster_object.labels_)
    compare_region_lists(result, optimal_clustering)
예제 #4
0
def test_w_basic():
    cluster_object = MaxPRegionsHeu(random_state=0)
    cluster_object.fit_from_w(w,
                              attr,
                              spatially_extensive_attr,
                              threshold=threshold)
    result = region_list_from_array(cluster_object.labels_)
    compare_region_lists(result, optimal_clustering)
예제 #5
0
def test_w_basic():
    cluster_object = MaxPRegionsHeu(random_state=0)
    cluster_object.fit_from_w(w, attr, spatially_extensive_attr,
                              threshold=threshold)
    result = region_list_from_array(cluster_object.labels_)
    compare_region_lists(result, optimal_clustering)