예제 #1
0
def get_rule_projections(tx, hierarchy, graph_id, rule, instance, rhs_typing=None):
    """Execute the query finding rule liftings."""
    if rhs_typing is None:
        rhs_typing = {}

    projections = {}

    if rule.is_relaxing():
        if len(rule.lhs.nodes()) > 0:
            lhs_instance = {
                n: instance[n] for n in rule.lhs.nodes()
            }
            lhs_vars = {
                n: n for n in rule.lhs.nodes()}
            match_instance_vars = {
                v: lhs_instance[k] for k, v in lhs_vars.items()
            }

            # Match nodes
            query = "// Match nodes the instance of the rewritten graph \n"
            query += "MATCH {}".format(
                ", ".join([
                    "({}:{} {{id: '{}'}})".format(k, graph_id, v)
                    for k, v in match_instance_vars.items()
                ])
            )
            query += "\n\n"

            carry_vars = list(lhs_vars.values())
            for k, v in lhs_vars.items():
                query += (
                    "OPTIONAL MATCH (n)<-[:typing*1..]-({})\n".format(v) +
                    "WITH {} \n".format(
                        ", ".join(
                            carry_vars +
                            ["collect(DISTINCT {{type:'node', origin: {}.id, id: n.id, graph:labels(n)[0], attrs: properties(n)}}) as {}_dict\n".format(
                                v, v)])
                    )
                )
                carry_vars.append("{}_dict".format(v))

            # Match edges
            for (u, v) in rule.p.edges():
                edge_var = "{}_{}".format(lhs_vars[u], lhs_vars[v])
                query += "OPTIONAL MATCH ({}_instance)-[{}:edge]->({}_instance)\n".format(
                    lhs_vars[u],
                    edge_var,
                    lhs_vars[v])
                query += "WHERE ({})<-[:typing*1..]-({}) AND ({})<-[:typing*1..]-({})\n".format(
                    "{}_instance".format(lhs_vars[u]), lhs_vars[u],
                    "{}_instance".format(lhs_vars[v]), lhs_vars[v])
                query += (
                    "WITH {} \n".format(
                        ", ".join(carry_vars + [
                            "collect({{type: 'edge', source: {}.id, target: {}.id, graph:labels({})[0], attrs: properties({})}}) as {}\n".format(
                                "{}_instance".format(lhs_vars[u]),
                                "{}_instance".format(lhs_vars[v]),
                                "{}_instance".format(lhs_vars[u]),
                                edge_var,
                                edge_var)
                        ])
                    )
                )
                carry_vars.append(edge_var)
            query += "RETURN {}".format(
                ", ".join(
                    ["{}_dict as {}".format(v, v) for v in lhs_vars.values()] +
                    ["{}_{}".format(lhs_vars[u], lhs_vars[v]) for u, v in rule.p.edges()]))

            result = tx.run(query)
            record = result.single()

            l_l_ts = {}
            l_nodes = {}
            l_edges = {}
            for k, v in record.items():
                if len(v) > 0:
                    if v[0]["type"] == "node":
                        for el in v:
                            l_node = keys_by_value(instance, el["origin"])[0]
                            if el["graph"] not in l_nodes:
                                l_nodes[el["graph"]] = {}
                                l_l_ts[el["graph"]] = {}
                            if el["id"] not in l_nodes[el["graph"]]:
                                l_nodes[el["graph"]][el["id"]] = {}
                            l_nodes[el["graph"]][el["id"]] = attrs_union(
                                l_nodes[el["graph"]][el["id"]],
                                attrs_intersection(
                                    generic.convert_props_to_attrs(el["attrs"]),
                                    get_node(rule.lhs, l_node)))
                            l_l_ts[el["graph"]][l_node] = el["id"]
                    else:
                        for el in v:
                            l_sources = keys_by_value(l_l_ts[el["graph"]], el["source"])
                            l_targets = keys_by_value(l_l_ts[el["graph"]], el["target"])

                            for l_source in l_sources:
                                for l_target in l_targets:
                                    if exists_edge(rule.l, l_source, l_target):
                                        if el["graph"] not in l_edges:
                                            l_edges[el["graph"]] = {}
                                        if (el["source"], el["target"]) not in l_edges[el["graph"]]:
                                            l_edges[el["graph"]][(el["source"], el["target"])] = {}
                                        l_edges[el["graph"]][(el["source"], el["target"])] =\
                                            attrs_union(
                                                l_edges[el["graph"]][(el["source"], el["target"])],
                                                attrs_intersection(
                                                    generic.convert_props_to_attrs(el["attrs"]),
                                                    get_edge(rule.lhs, l_source, l_target)))

        for graph, typing in hierarchy.get_descendants(graph_id).items():
            if graph in l_nodes:
                nodes = l_nodes[graph]
            else:
                nodes = {}
            if graph in l_edges:
                edges = l_edges[graph]
            else:
                edges = {}

            l = nx.DiGraph()
            add_nodes_from(l, [(k, v) for k, v in nodes.items()])
            if graph in l_edges:
                add_edges_from(
                    l,
                    [(s, t, v) for (s, t), v in edges.items()])

            rhs, p_rhs, r_r_t = pushout(
                rule.p, l, rule.rhs, compose(rule.p_lhs, l_l_ts[graph]), rule.p_rhs)

            l_t_t = {n: n for n in nodes}

            # Modify P_T and R_T according to the controlling
            # relation rhs_typing
            if graph in rhs_typing.keys():
                r_t_factorization = {
                    r_r_t[k]: v
                    for k, v in rhs_typing[graph].items()
                }
                added_t_nodes = set()
                for n in rhs.nodes():
                    if n in r_t_factorization.keys():
                        # If corresponding R_T node is specified in
                        # the controlling relation add nodes of T
                        # that type it to P
                        t_nodes = r_t_factorization[n]
                        for t_node in t_nodes:
                            if t_node not in l_t_t.values() and\
                               t_node not in added_t_nodes:
                                new_p_node = generate_new_id(
                                    l.nodes(), t_node)
                                l.add_node(new_p_node)
                                added_t_nodes.add(t_node)
                                p_rhs[new_p_node] = n
                                l_t_t[new_p_node] = t_node
                            else:
                                p_rhs[keys_by_value(l_t_t, t_node)[0]] = n

            projections[graph] = {
                "rule": Rule(p=l, rhs=rhs, p_rhs=p_rhs),
                "instance": l_t_t,
                "l_l_t": l_l_ts[graph],
                "p_p_t": {k: l_l_ts[graph][v] for k, v in rule.p_lhs.items()},
                "r_r_t": r_r_t
            }

    return projections
예제 #2
0
    def test_refinement(self):
        graph = NXGraph()

        prim.add_nodes_from(graph, [
            ("a", {
                "name": "Bob"
            }),
            ("b", {
                "name": "Jane"
            }),
            ("c", {
                "name": "Alice"
            }),
            ("d", {
                "name": "Joe"
            }),
        ])
        prim.add_edges_from(graph, [("a", "a", {
            "type": "friends"
        }), ("a", "b", {
            "type": "enemies"
        }), ("c", "a", {
            "type": "colleages"
        }), ("d", "a", {
            "type": "siblings"
        })])

        pattern = NXGraph()
        pattern.add_nodes_from(["x", "y"])
        pattern.add_edges_from([("y", "x")])
        instance = {"x": "a", "y": "d"}

        # Remove node side-effects
        rule = Rule.from_transform(NXGraph.copy(pattern))
        rule.inject_remove_node("x")

        new_instance = rule.refine(graph, instance)
        assert (new_instance == {"x": "a", "y": "d", "b": "b", "c": "c"})
        assert (prim.get_node(rule.lhs, "x") == prim.get_node(graph, "a"))
        assert (prim.get_edge(rule.lhs, "x",
                              "b") == prim.get_edge(graph, "a", "b"))
        assert (prim.get_edge(rule.lhs, "c",
                              "x") == prim.get_edge(graph, "c", "a"))

        # Remove edge side-effects
        rule = Rule.from_transform(NXGraph.copy(pattern))
        rule.inject_remove_edge("y", "x")

        new_instance = rule.refine(graph, instance)
        assert (prim.get_edge(rule.lhs, "y",
                              "x") == prim.get_edge(graph, "d", "a"))

        # Merge side-effects
        rule = Rule.from_transform(NXGraph.copy(pattern))
        rule.inject_merge_nodes(["x", "y"])
        new_instance = rule.refine(graph, instance)

        assert (new_instance == {"x": "a", "y": "d", "b": "b", "c": "c"})
        assert (rule.lhs.get_node("x") == graph.get_node("a"))
        assert (rule.lhs.get_node("y") == graph.get_node("d"))
        assert (rule.lhs.get_edge("y", "x") == graph.get_edge("d", "a"))

        # Combined side-effects
        # Ex1: Remove cloned edge + merge with some node
        graph.remove_edge("a", "a")
        pattern.add_node("z")
        pattern.add_edge("x", "z")
        instance["z"] = "b"
        rule = Rule.from_transform(NXGraph.copy(pattern))
        p_node, _ = rule.inject_clone_node("x")
        rule.inject_remove_node("z")
        rule.inject_remove_edge("y", p_node)
        rule.inject_merge_nodes([p_node, "y"])

        new_instance = rule.refine(graph, instance)

        assert (new_instance == {"x": "a", "y": "d", "z": "b", "c": "c"})
        assert (prim.get_node(rule.lhs, "x") == prim.get_node(graph, "a"))
        assert (prim.get_node(rule.lhs, "y") == prim.get_node(graph, "d"))
        assert (prim.get_edge(rule.lhs, "y",
                              "x") == prim.get_edge(graph, "d", "a"))

        # test with rule inversion
        backup = NXGraph.copy(graph)
        rhs_g = graph.rewrite(rule, new_instance)

        inverted = rule.get_inverted_rule()

        rhs_gg = graph.rewrite(inverted, rhs_g)
        # print(rhs_gg)
        old_node_labels = {v: new_instance[k] for k, v in rhs_gg.items()}

        graph.relabel_nodes(old_node_labels)

        assert (backup == graph)
예제 #3
0
def get_rule_liftings(tx, graph_id, rule, instance, p_typing=None):
    """Execute the query finding rule liftings."""
    if p_typing is None:
        p_typing = {}

    liftings = {}
    if len(rule.lhs.nodes()) > 0:
        lhs_vars = {
            n: n for n in rule.lhs.nodes()}
        match_instance_vars = {lhs_vars[k]: v for k, v in instance.items()}

        # Match nodes
        query = "// Match nodes the instance of the rewritten graph \n"
        query += "MATCH {}".format(
            ", ".join([
                "({}:{} {{id: '{}'}})".format(k, graph_id, v)
                for k, v in match_instance_vars.items()
            ])
        )
        query += "\n\n"

        carry_vars = list(lhs_vars.values())
        for k, v in lhs_vars.items():
            query += (
                "OPTIONAL MATCH (n)-[:typing*1..]->({})\n".format(v) +
                "WITH {} \n".format(
                    ", ".join(carry_vars + [
                        "collect({{type:'node', origin: {}.id, id: n.id, graph:labels(n)[0], attrs: properties(n)}}) as {}_dict\n".format(
                            v, v)])
                )
            )
            carry_vars.append("{}_dict".format(v))
        # Match edges
        for (u, v) in rule.lhs.edges():
            edge_var = "{}_{}".format(lhs_vars[u], lhs_vars[v])
            query += "OPTIONAL MATCH ({}_instance)-[{}:edge]->({}_instance)\n".format(
                lhs_vars[u],
                edge_var,
                lhs_vars[v])
            query += "WHERE ({})-[:typing*1..]->({}) AND ({})-[:typing*1..]->({})\n".format(
                "{}_instance".format(lhs_vars[u]), lhs_vars[u],
                "{}_instance".format(lhs_vars[v]), lhs_vars[v])
            query += (
                "WITH {} \n".format(
                    ", ".join(carry_vars + [
                        "collect({{type: 'edge', source: {}.id, target: {}.id, attrs: properties({}), graph:labels({})[0]}}) as {}\n".format(
                            "{}_instance".format(lhs_vars[u]),
                            "{}_instance".format(lhs_vars[v]),
                            edge_var,
                            "{}_instance".format(lhs_vars[u]),
                            edge_var)
                    ])
                )
            )
            carry_vars.append(edge_var)
        query += "RETURN {}".format(
            ", ".join(
                ["{}_dict as {}".format(v, v) for v in lhs_vars.values()] +
                ["{}_{}".format(lhs_vars[u], lhs_vars[v]) for u, v in rule.lhs.edges()]))

        result = tx.run(query)
        record = result.single()
        l_g_ls = {}
        lhs_nodes = {}
        lhs_edges = {}
        for k, v in record.items():
            if len(v) > 0:
                if v[0]["type"] == "node":
                    for el in v:
                        if el["graph"] not in lhs_nodes:
                            lhs_nodes[el["graph"]] = []
                            l_g_ls[el["graph"]] = {}
                        l_g_ls[el["graph"]][el["id"]] = keys_by_value(
                            instance, el["origin"])[0]
                        # compute attr intersection
                        attrs = attrs_intersection(
                            generic.convert_props_to_attrs(el["attrs"]),
                            get_node(rule.lhs, l_g_ls[el["graph"]][el["id"]]))
                        lhs_nodes[el["graph"]].append((el["id"], attrs))

                else:
                    for el in v:
                        if el["graph"] not in lhs_edges:
                            lhs_edges[el["graph"]] = []
                        # compute attr intersection
                        attrs = attrs_intersection(
                            generic.convert_props_to_attrs(el["attrs"]),
                            get_edge(
                                rule.lhs,
                                l_g_ls[el["graph"]][el["source"]],
                                l_g_ls[el["graph"]][el["target"]]))
                        lhs_edges[el["graph"]].append(
                            (el["source"], el["target"], attrs)
                        )

        for graph, nodes in lhs_nodes.items():

            lhs = nx.DiGraph()
            add_nodes_from(lhs, nodes)
            if graph in lhs_edges:
                add_edges_from(
                    lhs, lhs_edges[graph])

            p, p_lhs, p_g_p = pullback(
                lhs, rule.p, rule.lhs, l_g_ls[graph], rule.p_lhs)

            l_g_g = {n[0]: n[0] for n in nodes}

            # Remove controlled things from P_G
            if graph in p_typing.keys():
                l_g_factorization = {
                    keys_by_value(l_g_g, k)[0]: v
                    for k, v in p_typing[graph].items()
                }
                p_g_nodes_to_remove = set()
                for n in p.nodes():
                    l_g_node = p_lhs[n]
                    # If corresponding L_G node is specified in
                    # the controlling relation, remove all
                    # the instances of P nodes not mentioned
                    # in this relations
                    if l_g_node in l_g_factorization.keys():
                        p_nodes = l_g_factorization[l_g_node]
                        if p_g_p[n] not in p_nodes:
                            del p_g_p[n]
                            del p_lhs[n]
                            p_g_nodes_to_remove.add(n)

                for n in p_g_nodes_to_remove:
                    p.remove_node(n)

            liftings[graph] = {
                "rule": Rule(p=p, lhs=lhs, p_lhs=p_lhs),
                "instance": l_g_g,
                "l_g_l": l_g_ls[graph],
                "p_g_p": p_g_p
            }
    else:
        query = generic.ancestors_query(graph_id, "graph", "homomorphism")
        result = tx.run(query)
        ancestors = [record["ancestor"] for record in result]
        for a in ancestors:
            liftings[a] = {
                "rule": Rule.identity_rule(),
                "instance": {},
                "l_g_l": {},
                "p_g_p": {}
            }

    return liftings