#               "n_estimators": [1000, 1500],
#               "max_depth": [5, 10],
#               "max_features": [0.3, "sqrt"]
#               }
cv_i = False
param_grid = {
    "loss": "huber",
    "learning_rate": 0.01,
    "n_estimators": 1000,
    "max_depth": 5,
    "max_features": 10,
    "warm_start": True,
}

gbm_CV, pred_test = gbm_fun.train_and_test_gradboost(training_features,
                                                     traj_testing,
                                                     param_grid=param_grid,
                                                     cv=cv_i)
np.save(saving_path + "predicted_test_set.npy", pred_test)
joblib.dump(gbm_CV, saving_path + "clf.pkl")

# predictions

if cv_i is True:
    alg = gbm_CV.best_estimator_
    ml.write_to_file_cv_results(saving_path + "cv_results.txt", gbm_CV)
else:
    alg = gbm_CV

ada_r2_train = np.zeros(len(alg.estimators_), )
for i, y_pred in enumerate(alg.staged_predict(training_features[:, :-1])):
    ada_r2_train[i] = r2_score(log_halo_training, y_pred)
예제 #2
0
    # param_grid = {"loss": ["huber"],
    #               "learning_rate": [0.2],
    #               "n_estimators": [500, 800],
    #               "max_depth":[5, 100],
    #               "max_features":[0.3, "sqrt"]
    #               }

    param_grid = {"loss": ["huber"],
                  "learning_rate": [0.1, 0.15, 0.2],
                  "n_estimators": [800, 1000],
                  "max_depth":[5],
                  "max_features":[0.3, "sqrt"]
                  }

    ada_CV, pred_test = gbm_fun.train_and_test_gradboost(tr_features_07_04, testing_signal_07_corr,
                                                         param_grid=param_grid, cv=cv_i)
    np.save(saving_path + "predicted_test_set.npy", pred_test)
    ml.write_to_file_cv_results(saving_path + "cv_results.txt", ada_CV)
    joblib.dump(ada_CV, saving_path + "clf.pkl")

    # predictions

    if cv_i is True:
        alg = ada_CV.best_estimator_
    else:
        alg = ada_CV

    ada_r2_train = np.zeros(len(alg.estimators_), )
    for i, y_pred in enumerate(alg.staged_predict(tr_features_07_04[:, :-1])):
        ada_r2_train[i] = r2_score(log_mass_training, y_pred)
    "loss": ["huber"],
    "learning_rate": [0.1],
    "n_estimators": [800],
    "max_depth": [5],
    "max_features": [0.3, 0.2]
}
param_grid = {
    "loss": "huber",
    "learning_rate": 1,
    "n_estimators": 800,
    "max_depth": 5,
    "max_features": 0.2
}

gbm, pred_test = gbm_fun.train_and_test_gradboost(training_features,
                                                  testing_features,
                                                  param_grid=param_grid,
                                                  cv=False)

np.save(saving_path + "predicted_test_set.npy", pred_test)
joblib.dump(gbm, saving_path + "clf.pkl")
np.save(saving_path + "importances.pdf",
        gbm.best_estimator_.feature_importances_)

ml.write_to_file_cv_results(saving_path + "cv_results.txt", gbm)

# predictions

if cv_i is True:
    alg = gbm.best_estimator_
else:
    alg = gbm
예제 #4
0
z0_den_testing = z0_den_features[testing_set]
log_halo_testing = np.log10(halo_mass[testing_set])
np.save(saving_path_z0 + "log_halo_testing_set.npy", log_halo_testing)

# training z=0

param_grid = {
    "loss": "lad",
    "learning_rate": 0.06,
    "n_estimators": 2000,
    "max_depth": 5,
    "max_features": "sqrt"
}

clf_z0, pred_test = gbm_fun.train_and_test_gradboost(training_features,
                                                     z0_den_testing,
                                                     param_grid=param_grid,
                                                     cv=False)

np.save(saving_path_z0 + "predicted_test_set.npy", pred_test)
joblib.dump(clf_z0, saving_path_z0 + "clf.pkl")

################# GBT VS RF #####################
pred_z0 = np.load(
    "/Users/lls/Documents/mlhalos_files/regression/gradboost/random_sampled_training/z0_den"
    "/nest_2000_lr006/predicted_test_set.npy")
true_z0 = np.load(
    "/Users/lls/Documents/mlhalos_files/regression/gradboost/random_sampled_training/z0_den"
    "/nest_2000_lr006/log_halo_testing_set.npy")

pred_RF_z0 = np.load(
    "/Users/lls/Documents/mlhalos_files/regression/lowz_density/z0/z0_only/predicted_log_halo_mass.npy"