def train_lr(): train_x, train_y = regression.load_data_set('abalone.txt') # calculate the training y using the data set of the 0-100 samples y_train_hat1 = regression.local_weight_array_test(train_x[0:99], train_x[0:99], train_y[0:99], k=0.1) y_train_hat2 = regression.local_weight_array_test(train_x[0:99], train_x[0:99], train_y[0:99], k=1) y_train_hat3 = regression.local_weight_array_test(train_x[0:99], train_x[0:99], train_y[0:99], k=10) # calculate the training error and print y_train_error1 = res_error(train_y[0:99], y_train_hat1.T) y_train_error2 = res_error(train_y[0:99], y_train_hat2.T) y_train_error3 = res_error(train_y[0:99], y_train_hat3.T) print 'k = 0.1, training error is: ', y_train_error1 print 'k = 1, training error is: ', y_train_error2 print 'k = 10, training error is: ', y_train_error3 print '=' * 50 # calculate the test y using the data set of the 100-199 samples y_test_hat1 = regression.local_weight_array_test(train_x[100:199], train_x[0:99], train_y[0:99], k=0.1) y_test_hat2 = regression.local_weight_array_test(train_x[100:199], train_x[0:99], train_y[0:99], k=1) y_test_hat3 = regression.local_weight_array_test(train_x[100:199], train_x[0:99], train_y[0:99], k=10) # calculate the test error and print y_test_error1 = res_error(train_y[100:199], y_test_hat1.T) y_test_error2 = res_error(train_y[100:199], y_test_hat2.T) y_test_error3 = res_error(train_y[100:199], y_test_hat3.T) print 'k = 0.1, test error is: ', y_test_error1 print 'k = 1, test error is: ', y_test_error2 print 'k = 10, test error is: ', y_test_error3
def ridge_test(): import matplotlib.pyplot as plt x_mat, y_mat = regression.load_data_set('abalone.txt') ridge_weights = ridge_train(x_mat, y_mat) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(ridge_weights) plt.show()
def test_plot_weight(): x_arr, y_arr = regression.load_data_set('ex0.txt') regression.plot_local_weight([1.0, 0.5], x_arr, k=0.1)
def test_basic(): x_arr, y_arr = regression.load_data_set('ex0.txt') w = regression.calc_weight(x_arr, y_arr) print w
def test_stage(): x_arr, y_arr = regression.load_data_set('abalone.txt') stage_wise(x_arr, y_arr, 0.01, 200)