예제 #1
0
 def n_deriv(vals):
     evals = extend_vals(vals)
     if type(vals) != type(coeffs) or len(evals) != len(coeffs):
         print("Error in list sizes. Vals {} // Coeffs {}".format(evals, coeffs))
         raise IndexError
     prod = dot(evals, coeffs)
     deriv = -logistic_func(vals)**2 * (-evals[n] * math.exp(-prod))
     return deriv
예제 #2
0
stdpts = stdpts_with_stats["points"]
stats = stdpts_with_stats["stats"]
print("Standardized points: {} // stats {}".format(stdpts, stats))
params = (0.1, 0.1, 0.1, 0.1)

log_func = logistic_function(params)
print("Cost 1: {}".format(non_regularized_cost(log_func, stdpts)))

final_func = regularized_logistic_regression_bounded(log_func, 0.1, 0.000001,
                                                     10, stdpts, 0.01)

print(list(final_func["params"]))

print("Output values: {}".format([((x, y), final_func["func"](x))
                                  for x, y in stdpts]))

print("Vals {} // Coeffs{} // Dot: {}".format(
    extend_vals(pts[0][0]), final_func["params"],
    dot(extend_vals(pts[0][0]), final_func["params"])))

final_func = logistic_regression_bounded(log_func, 0.1, 0.000001, 10, stdpts)

print(list(final_func["params"]))

print("Output values: {}".format([((x, y), final_func["func"](x))
                                  for x, y in stdpts]))

print("Vals {} // Coeffs{} // Dot: {}".format(
    extend_vals(pts[0][0]), final_func["params"],
    dot(extend_vals(pts[0][0]), final_func["params"])))
예제 #3
0
 def n_deriv(vals):
     return extend_vals(vals)[n]
예제 #4
0
 def generated(vals):
     vals = extend_vals(vals)
     if len(vals) != len(coeffs):
         raise IndexError
     return sum(c*v for (c, v) in zip(coeffs, vals))
예제 #5
0
 def generated(vals):
     vals = extend_vals(vals)
     if len(vals) != len(coeffs):
         raise IndexError
     prod = dot(vals, coeffs)
     return 1/(1 + math.exp(-prod))