estimate_list = [1] * n # the range of penalization strength lambda_range = [1e-8, 1e6] # number of penalizations n_lambda = 2 # initalize l1 regularization # add shift parameter (=epsilon) which defines the offset of # the logarithmic scale initialize_regularization = regularization.l1_regularization( model=model, petab_problem=petab_problem, objective=obj, scale_list=scale_list_logicle, estimate_list=estimate_list, lambda_range=lambda_range, n_lambda=n_lambda, logicle_obj=logicle_obj) # DO L1 REGULARIZATION _________________________________________________________________________________________________ # specify inputs n_starts = 10 # optimization method and options opt_method = 'L-BFGS-B' opt_options = {'maxiter': 1e5, 'ftol': 1e-10, 'gtol': 1e-10, 'maxls': 80} # opt.options = {'maxcor': 10, 'ftol': 1e-10, 'gtol': 1e-05, 'eps': 1e-08, 'maxfun': 1e5, # 'maxiter': 1e5, 'maxls': 20}
estimate_list = [1, 1, 1, 0] # the range of penalization strength lambda_range = [1, 100] # number of penalizations n_lambda = 100 # initalize l1 regularization # add shift parameter (=epsilon) which defines the offset of # the logarithmic scale initialize_regularization = regularization.l1_regularization( model=model, petab_problem=petab_problem, objective=obj, scale_list=scale_list_logE, estimate_list=estimate_list, lambda_range=lambda_range, n_lambda=n_lambda, shift_par=eps) # DO L1 REGULARIZATION _________________________________________________________________________________________________ # specify inputs n_starts = 1000 # optimization method and options opt_method = 'L-BFGS-B' opt_options = {'maxiter': 1e5, 'ftol': 1e-10, 'gtol': 1e-10} # define startpoints as the best starts of the optimization