def main(): parser = argparse.ArgumentParser() parser.add_argument("--model", type=str) parser.add_argument("--ip", type=str) parser.add_argument("--verbose", "-v", action='store_true') parser.add_argument('--report_interval', '-r', help="Duration of reporting interval, in seconds", default=10, type=int) args = parser.parse_args() relay = Relay(args.ip) # Initialize TRT environment input_shape = (300, 300) trt_logger = trt.Logger(trt.Logger.INFO) trt.init_libnvinfer_plugins(trt_logger, '') with open(args.model, 'rb') as f, trt.Runtime(trt_logger) as runtime: engine = runtime.deserialize_cuda_engine(f.read()) host_inputs = [] cuda_inputs = [] host_outputs = [] cuda_outputs = [] bindings = [] stream = cuda.Stream() for binding in engine: size = trt.volume( engine.get_binding_shape(binding)) * engine.max_batch_size host_mem = cuda.pagelocked_empty(size, np.float32) cuda_mem = cuda.mem_alloc(host_mem.nbytes) bindings.append(int(cuda_mem)) if engine.binding_is_input(binding): host_inputs.append(host_mem) cuda_inputs.append(cuda_mem) else: host_outputs.append(host_mem) cuda_outputs.append(cuda_mem) context = engine.create_execution_context() watch = Stopwatch() while True: img = relay.get_image() print("Received image", watch.numread) if img is None: break # Preprocessing: watch.start() ih, iw = img.shape[:-1] if (iw, ih) != input_shape: img = cv2.resize(img, input_shape) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = img.transpose((2, 0, 1)).astype(np.float32) img *= (2.0 / 255.0) img -= 1.0 np.copyto(host_inputs[0], img.ravel()) watch.stop(Stopwatch.MODE_PREPROCESS) watch.start() cuda.memcpy_htod_async(cuda_inputs[0], host_inputs[0], stream) context.execute_async(batch_size=1, bindings=bindings, stream_handle=stream.handle) cuda.memcpy_dtoh_async(host_outputs[1], cuda_outputs[1], stream) cuda.memcpy_dtoh_async(host_outputs[0], cuda_outputs[0], stream) stream.synchronize() watch.stop(Stopwatch.MODE_INFER) # Postprocessing watch.start() output = host_outputs[0] results = [] for prefix in range(0, len(output), 7): conf = float(output[prefix + 2]) if conf < 0.5: continue x1 = int(output[prefix + 3] * iw) y1 = int(output[prefix + 4] * ih) x2 = int(output[prefix + 5] * iw) y2 = int(output[prefix + 6] * ih) cls = int(output[prefix + 1]) results.append(((x1, y1, x2, y2), cls, conf)) if args.verbose: print(results) relay.send_results(results) watch.stop(Stopwatch.MODE_POSTPROCESS) if watch.report(): print("TCP Latency to source: ", round(measure_latency(host=args.ip, port=relay.port)[0], 3), "ms") relay.close()
def main(): parser = argparse.ArgumentParser() parser.add_argument('--model', help='Path of the detection model.', required=True, type=str) parser.add_argument('--ip', "-i", help='File path of the input image.', required=True, type=str) parser.add_argument('--report_interval', '-r', help="Duration of reporting interval, in seconds", default=10, type=int) parser.add_argument('-v', "--verbose", help="Print information about detected objects", action='store_true') args = parser.parse_args() relay = Relay(args.ip, args.verbose) engine = DetectionEngine(args.model) watch = Stopwatch() while True: if args.verbose: print("ready for next inference") img = relay.get_image() if img is None: break if args.verbose: print("Received image ", watch.numread) watch.start() initial_h, initial_w, _ = img.shape if (initial_h, initial_w) != (300, 300): frame = cv2.resize(img, (300, 300)) else: frame = img frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) watch.stop(Stopwatch.MODE_PREPROCESS) watch.start() ans = engine.detect_with_input_tensor(frame.flatten(), threshold=0.5, top_k=10) watch.stop(Stopwatch.MODE_INFER) if args.verbose: print("Got inference results for frame ", watch.numread, ": ", ans) watch.start() # Display result results = [] for obj in ans: box = obj.bounding_box.flatten().tolist() bbox = [0] * 4 bbox[0] = int(box[0] * initial_w) bbox[1] = int(box[1] * initial_h) bbox[2] = int(box[2] * initial_w) bbox[3] = int(box[3] * initial_h) result = (bbox, obj.label_id + 1, obj.score) results.append(result) relay.send_results(results) watch.stop(Stopwatch.MODE_POSTPROCESS) if watch.report(): print("TCP Latency to source: ", round(measure_latency(host=args.ip, port=relay.port)[0], 3), "ms") relay.close()