def test_Fit_Normal_2P(): dist = Normal_Distribution(mu=50, sigma=8) rawdata = dist.random_samples(20, seed=5) data = make_right_censored_data(data=rawdata, threshold=dist.mean) MLE = Fit_Normal_2P(failures=data.failures, right_censored=data.right_censored, method='MLE', show_probability_plot=False, print_results=False) assert_allclose(MLE.mu, 49.01641649924297, rtol=rtol, atol=atol) assert_allclose(MLE.sigma, 6.653242350482225, rtol=rtol, atol=atol) assert_allclose(MLE.AICc, 91.15205546551952, rtol=rtol, atol=atol) assert_allclose(MLE.BIC, 92.43763765968633, rtol=rtol, atol=atol) assert_allclose(MLE.loglik, -43.223086556289175, rtol=rtol, atol=atol) assert_allclose(MLE.AD, 63.64069171746617, rtol=rtol, atol=atol) assert_allclose(MLE.Cov_mu_sigma, 1.0395705891908218, rtol=rtol, atol=atol) LS = Fit_Normal_2P(failures=data.failures, right_censored=data.right_censored, method='LS', show_probability_plot=False, print_results=False) assert_allclose(LS.mu, 48.90984235374872, rtol=rtol, atol=atol) assert_allclose(LS.sigma, 6.990098677785364, rtol=rtol, atol=atol) assert_allclose(LS.AICc, 91.21601631804141, rtol=rtol, atol=atol) assert_allclose(LS.BIC, 92.50159851220822, rtol=rtol, atol=atol) assert_allclose(LS.loglik, -43.25506698255012, rtol=rtol, atol=atol) assert_allclose(LS.AD, 63.657853523044515, rtol=rtol, atol=atol) assert_allclose(LS.Cov_mu_sigma, 1.0973540350799618, rtol=rtol, atol=atol)
def test_stress_strength_normal(): stress = Normal_Distribution(mu=50, sigma=5) strength = Normal_Distribution(mu=80, sigma=7) result = stress_strength_normal(stress=stress, strength=strength, print_results=False, show_plot=False) assert_allclose(result, 0.00024384404803800858, rtol=rtol, atol=atol)
def test_Probability_of_failure_normdist(): stress = Normal_Distribution(mu=50, sigma=5) strength = Normal_Distribution(mu=80, sigma=7) result = Probability_of_failure_normdist(stress=stress, strength=strength, print_results=False, show_distribution_plot=False) assert_allclose(result, 0.00024384404803800858, rtol=rtol, atol=atol)
def test_Fit_Normal_2P(): dist = Normal_Distribution(mu=50,sigma=8) rawdata = dist.random_samples(20, seed=5) data = make_right_censored_data(data=rawdata, threshold=dist.mean) fit = Fit_Normal_2P(failures=data.failures, right_censored=data.right_censored, show_probability_plot=False, print_results=False) assert_allclose(fit.mu, 49.01641765388186,rtol=rtol,atol=atol) assert_allclose(fit.sigma, 6.653242153943476,rtol=rtol,atol=atol) assert_allclose(fit.AICc, 91.15205546551915,rtol=rtol,atol=atol) assert_allclose(fit.Cov_mu_sigma, 1.0395713921235965,rtol=rtol,atol=atol) assert_allclose(fit.loglik, -43.22308655628899,rtol=rtol,atol=atol)
def __update_params(_, self): value1 = self.s0.val value2 = self.s1.val value3 = self.s2.val if self.name == 'Weibull': dist = Weibull_Distribution(alpha=value1, beta=value2, gamma=value3) elif self.name == 'Loglogistic': dist = Loglogistic_Distribution(alpha=value1, beta=value2, gamma=value3) elif self.name == 'Gamma': dist = Gamma_Distribution(alpha=value1, beta=value2, gamma=value3) elif self.name == 'Loglogistic': dist = Loglogistic_Distribution(alpha=value1, beta=value2, gamma=value3) elif self.name == 'Lognormal': dist = Lognormal_Distribution(mu=value1, sigma=value2, gamma=value3) elif self.name == 'Beta': dist = Beta_Distribution(alpha=value1, beta=value2) elif self.name == 'Normal': dist = Normal_Distribution(mu=value1, sigma=value2) elif self.name == 'Exponential': dist = Exponential_Distribution(Lambda=value1, gamma=value2) else: raise ValueError(str(self.name + ' is an unknown distribution name')) plt.sca(self.ax_pdf) plt.cla() dist.PDF() plt.title('PDF') plt.xlabel('') plt.ylabel('') plt.sca(self.ax_cdf) plt.cla() dist.CDF() plt.title('CDF') plt.xlabel('') plt.ylabel('') plt.sca(self.ax_sf) plt.cla() dist.SF() plt.title('SF') plt.xlabel('') plt.ylabel('') plt.sca(self.ax_hf) plt.cla() dist.HF() plt.title('HF') plt.xlabel('') plt.ylabel('') plt.sca(self.ax_chf) plt.cla() dist.CHF() plt.title('CHF') plt.xlabel('') plt.ylabel('') plt.subplots_adjust(left=0.07, right=0.98, top=0.9, bottom=0.25, wspace=0.18, hspace=0.30) plt.suptitle(dist.param_title_long, fontsize=15) plt.draw()
def test_Mixture_Model(): distributions = [Weibull_Distribution(alpha=30, beta=2), Normal_Distribution(mu=35, sigma=5)] dist = Mixture_Model(distributions=distributions, proportions=[0.6,0.4]) assert_allclose(dist.mean, 29.952084649328917, rtol=rtol, atol=atol) assert_allclose(dist.standard_deviation, 11.95293368817564, rtol=rtol, atol=atol) assert_allclose(dist.variance, 142.87262375392413, rtol=rtol, atol=atol) assert_allclose(dist.skewness, 0.015505959874527537, rtol=rtol, atol=atol) assert_allclose(dist.kurtosis, 3.4018343377801674, rtol=rtol, atol=atol) assert dist.name2 == 'Mixture using 2 distributions' assert_allclose(dist.quantile(0.2), 19.085648329240094, rtol=rtol, atol=atol) assert_allclose(dist.inverse_SF(q=0.7), 24.540270766923847, rtol=rtol, atol=atol) assert_allclose(dist.mean_residual_life(20), 14.686456940211107, rtol=rtol, atol=atol) xvals = [dist.quantile(0.001), dist.quantile(0.01), dist.quantile(0.1), dist.quantile(0.9), dist.quantile(0.99), dist.quantile(0.999)] assert_allclose(dist.PDF(xvals=xvals, show_plot=False), [0.0016309, 0.00509925, 0.01423464, 0.01646686, 0.00134902, 0.00016862], rtol=rtol, atol=atol) assert_allclose(dist.CDF(xvals=xvals, show_plot=False), [0.00099994, 0.00999996, 0.10000006, 0.90000056, 0.99000001, 0.999], rtol=rtol, atol=atol) assert_allclose(dist.SF(xvals=xvals, show_plot=False), [0.99900006, 0.99000004, 0.89999994, 0.09999944, 0.00999999, 0.001], rtol=rtol, atol=atol) assert_allclose(dist.HF(xvals=xvals, show_plot=False), [0.00163253, 0.00515076, 0.01581627, 0.16466956, 0.13490177, 0.16861429], rtol=rtol, atol=atol) assert_allclose(dist.CHF(xvals=xvals, show_plot=False), [1.00043950e-03, 1.00502998e-02, 1.05360581e-01, 2.30259070e+00, 4.60517090e+00, 6.90775056e+00], rtol=rtol, atol=atol)
def test_Competing_Risks_Model(): distributions = [Weibull_Distribution(alpha=30, beta=2), Normal_Distribution(mu=35, sigma=5)] dist = Competing_Risks_Model(distributions=distributions) assert_allclose(dist.mean, 23.707625152181073, rtol=rtol, atol=atol) assert_allclose(dist.standard_deviation, 9.832880925543204, rtol=rtol, atol=atol) assert_allclose(dist.variance, 96.68554729591138, rtol=rtol, atol=atol) assert_allclose(dist.skewness, -0.20597940178753704, rtol=rtol, atol=atol) assert_allclose(dist.kurtosis, 2.1824677678598667, rtol=rtol, atol=atol) assert dist.name2 == 'Competing risks using 2 distributions' assert_allclose(dist.quantile(0.2), 14.170859470541174, rtol=rtol, atol=atol) assert_allclose(dist.inverse_SF(q=0.7), 17.908811127053173, rtol=rtol, atol=atol) assert_allclose(dist.mean_residual_life(20), 9.862745898092886, rtol=rtol, atol=atol) xvals = [dist.quantile(0.001), dist.quantile(0.01), dist.quantile(0.1), dist.quantile(0.9), dist.quantile(0.99), dist.quantile(0.999)] assert_allclose(dist.PDF(xvals=xvals, show_plot=False), [0.00210671, 0.00661657, 0.01947571, 0.02655321, 0.00474024, 0.00062978], rtol=rtol, atol=atol) assert_allclose(dist.CDF(xvals=xvals, show_plot=False), [0.0010001, 0.00999995, 0.09999943, 0.90000184, 0.99000021, 0.99900003], rtol=rtol, atol=atol) assert_allclose(dist.SF(xvals=xvals, show_plot=False), [0.9989999, 0.99000005, 0.90000057, 0.09999816, 0.00999979, 0.00099997], rtol=rtol, atol=atol) assert_allclose(dist.HF(xvals=xvals, show_plot=False), [0.00210882, 0.00668341, 0.02163966, 0.265537, 0.47403341, 0.62980068], rtol=rtol, atol=atol) assert_allclose(dist.CHF(xvals=xvals, show_plot=False), [1.00059934e-03, 1.00502826e-02, 1.05359884e-01, 2.30260350e+00, 4.60519097e+00, 6.90778668e+00], rtol=rtol, atol=atol)
def __init__(self, distribution, include_location_shifted=True, show_plot=True, print_results=True, number_of_distributions_to_show=3): # ensure the input is a distribution object if type(distribution) not in [ Weibull_Distribution, Normal_Distribution, Lognormal_Distribution, Exponential_Distribution, Gamma_Distribution, Beta_Distribution ]: raise ValueError( 'distribution must be a probability distribution object from the reliability.Distributions module. First define the distribution using Reliability.Distributions.___' ) # sample the CDF from 0.001 to 0.999. These samples will be used to fit all other distributions. RVS = distribution.quantile( np.linspace(0.001, 0.999, 698) ) # 698 samples is the ideal number for the points to align. Evidenced using plot_points. # filter out negative values RVS_filtered = [] negative_values_error = False for item in RVS: if item > 0: RVS_filtered.append(item) else: negative_values_error = True if negative_values_error is True: print( 'WARNING: The input distribution has non-negligible area for x<0. Samples from this region have been discarded to enable other distributions to be fitted.' ) fitted_results = Fit_Everything( failures=RVS_filtered, print_results=False, show_probability_plot=False, show_histogram_plot=False, show_PP_plot=False ) # fit all distributions to the filtered samples ranked_distributions = list(fitted_results.results.index.values) ranked_distributions.remove( distribution.name2 ) # removes the fitted version of the original distribution ranked_distributions_objects = [] ranked_distributions_labels = [] sigfig = 2 for dist_name in ranked_distributions: if dist_name == 'Weibull_2P': ranked_distributions_objects.append( Weibull_Distribution(alpha=fitted_results.Weibull_2P_alpha, beta=fitted_results.Weibull_2P_beta)) ranked_distributions_labels.append( str('Weibull_2P (α=' + str(round(fitted_results.Weibull_2P_alpha, sigfig)) + ',β=' + str(round(fitted_results.Weibull_2P_beta, sigfig)) + ')')) elif dist_name == 'Gamma_2P': ranked_distributions_objects.append( Gamma_Distribution(alpha=fitted_results.Gamma_2P_alpha, beta=fitted_results.Gamma_2P_beta)) ranked_distributions_labels.append( str('Gamma_2P (α=' + str(round(fitted_results.Gamma_2P_alpha, sigfig)) + ',β=' + str(round(fitted_results.Gamma_2P_beta, sigfig)) + ')')) elif dist_name == 'Normal_2P': ranked_distributions_objects.append( Normal_Distribution(mu=fitted_results.Normal_2P_mu, sigma=fitted_results.Normal_2P_sigma)) ranked_distributions_labels.append( str('Normal_2P (μ=' + str(round(fitted_results.Normal_2P_mu, sigfig)) + ',σ=' + str(round(fitted_results.Normal_2P_sigma, sigfig)) + ')')) elif dist_name == 'Lognormal_2P': ranked_distributions_objects.append( Lognormal_Distribution( mu=fitted_results.Lognormal_2P_mu, sigma=fitted_results.Lognormal_2P_sigma)) ranked_distributions_labels.append( str('Lognormal_2P (μ=' + str(round(fitted_results.Lognormal_2P_mu, sigfig)) + ',σ=' + str(round(fitted_results.Lognormal_2P_sigma, sigfig)) + ')')) elif dist_name == 'Exponential_1P': ranked_distributions_objects.append( Exponential_Distribution( Lambda=fitted_results.Expon_1P_lambda)) ranked_distributions_labels.append( str('Exponential_1P (lambda=' + str(round(fitted_results.Expon_1P_lambda, sigfig)) + ')')) elif dist_name == 'Beta_2P': ranked_distributions_objects.append( Beta_Distribution(alpha=fitted_results.Beta_2P_alpha, beta=fitted_results.Beta_2P_beta)) ranked_distributions_labels.append( str('Beta_2P (α=' + str(round(fitted_results.Beta_2P_alpha, sigfig)) + ',β=' + str(round(fitted_results.Beta_2P_beta, sigfig)) + ')')) if include_location_shifted is True: if dist_name == 'Weibull_3P': ranked_distributions_objects.append( Weibull_Distribution( alpha=fitted_results.Weibull_3P_alpha, beta=fitted_results.Weibull_3P_beta, gamma=fitted_results.Weibull_3P_gamma)) ranked_distributions_labels.append( str('Weibull_3P (α=' + str( round(fitted_results.Weibull_3P_alpha, sigfig)) + ',β=' + str(round(fitted_results.Weibull_3P_beta, sigfig)) + ',γ=' + str(round(fitted_results.Weibull_3P_gamma, sigfig)) + ')')) elif dist_name == 'Gamma_3P': ranked_distributions_objects.append( Gamma_Distribution( alpha=fitted_results.Gamma_3P_alpha, beta=fitted_results.Gamma_3P_beta, gamma=fitted_results.Gamma_3P_gamma)) ranked_distributions_labels.append( str('Gamma_3P (α=' + str(round(fitted_results.Gamma_3P_alpha, sigfig)) + ',β=' + str(round(fitted_results.Gamma_3P_beta, sigfig)) + ',γ=' + str(round(fitted_results.Gamma_3P_gamma, sigfig)) + ')')) elif dist_name == 'Lognormal_3P': ranked_distributions_objects.append( Lognormal_Distribution( mu=fitted_results.Lognormal_3P_mu, sigma=fitted_results.Lognormal_3P_sigma, gamma=fitted_results.Lognormal_3P_gamma)) ranked_distributions_labels.append( str('Lognormal_3P (μ=' + str( round(fitted_results.Lognormal_3P_mu, sigfig)) + ',σ=' + str( round(fitted_results.Lognormal_3P_sigma, sigfig)) + ',γ=' + str( round(fitted_results.Lognormal_3P_gamma, sigfig)) + ')')) elif dist_name == 'Exponential_2P': ranked_distributions_objects.append( Exponential_Distribution( Lambda=fitted_results.Expon_1P_lambda, gamma=fitted_results.Expon_2P_gamma)) ranked_distributions_labels.append( str('Exponential_1P (lambda=' + str( round(fitted_results.Expon_1P_lambda, sigfig)) + ',γ=' + str(round(fitted_results.Expon_2P_gamma, sigfig)) + ')')) number_of_distributions_fitted = len(ranked_distributions_objects) self.results = ranked_distributions_objects self.most_similar_distribution = ranked_distributions_objects[0] if print_results is True: print('The input distribution was:') print(distribution.param_title_long) if number_of_distributions_fitted < number_of_distributions_to_show: number_of_distributions_to_show = number_of_distributions_fitted print('\nThe top', number_of_distributions_to_show, 'most similar distributions are:') counter = 0 while counter < number_of_distributions_to_show and counter < number_of_distributions_fitted: dist = ranked_distributions_objects[counter] print(dist.param_title_long) counter += 1 if show_plot is True: plt.figure(figsize=(14, 6)) plt.suptitle( str('Plot of similar distributions to ' + distribution.param_title_long)) counter = 0 xlower = distribution.quantile(0.001) xupper = distribution.quantile(0.999) x_delta = xupper - xlower plt.subplot(121) distribution.PDF(label=str('Input distribution [' + distribution.name2 + ']'), linestyle='--') while counter < number_of_distributions_to_show and counter < number_of_distributions_fitted: ranked_distributions_objects[counter].PDF( label=ranked_distributions_labels[counter]) counter += 1 plt.xlim([xlower - x_delta * 0.1, xupper + x_delta * 0.1]) plt.legend() plt.title('PDF') counter = 0 plt.subplot(122) distribution.CDF(label=str('Input distribution [' + distribution.name2 + ']'), linestyle='--') while counter < number_of_distributions_to_show and counter < number_of_distributions_fitted: ranked_distributions_objects[counter].CDF( label=ranked_distributions_labels[counter]) counter += 1 plt.xlim([xlower - x_delta * 0.1, xupper + x_delta * 0.1]) plt.legend() plt.title('CDF') plt.subplots_adjust(left=0.08, right=0.95) plt.show()
def __update_distribution(name, self): self.name = name if self.name == 'Weibull': dist = Weibull_Distribution(alpha=100, beta=2, gamma=0) param_names = ['Alpha', 'Beta', 'Gamma'] plt.sca(self.ax0) plt.cla() self.s0 = Slider(self.ax0, param_names[0], valmin=0.1, valmax=500, valinit=dist.alpha) plt.sca(self.ax1) plt.cla() self.s1 = Slider(self.ax1, param_names[1], valmin=0.2, valmax=25, valinit=dist.beta) try: # clear the slider axis if it exists plt.sca(self.ax2) plt.cla() except ValueError: # if the slider axis does no exist (because it was destroyed by a 2P distribution) then recreate it self.ax2 = plt.axes([0.1, 0.05, 0.8, 0.03], facecolor=self.background_color) self.s2 = Slider(self.ax2, param_names[2], valmin=0, valmax=500, valinit=dist.gamma) elif self.name == 'Gamma': dist = Gamma_Distribution(alpha=100, beta=5, gamma=0) param_names = ['Alpha', 'Beta', 'Gamma'] plt.sca(self.ax0) plt.cla() self.s0 = Slider(self.ax0, param_names[0], valmin=0.1, valmax=500, valinit=dist.alpha) plt.sca(self.ax1) plt.cla() self.s1 = Slider(self.ax1, param_names[1], valmin=0.2, valmax=25, valinit=dist.beta) try: # clear the slider axis if it exists plt.sca(self.ax2) plt.cla() except ValueError: # if the slider axis does no exist (because it was destroyed by a 2P distribution) then recreate it self.ax2 = plt.axes([0.1, 0.05, 0.8, 0.03], facecolor=self.background_color) self.s2 = Slider(self.ax2, param_names[2], valmin=0, valmax=500, valinit=dist.gamma) elif self.name == 'Loglogistic': dist = Loglogistic_Distribution(alpha=100, beta=8, gamma=0) param_names = ['Alpha', 'Beta', 'Gamma'] plt.sca(self.ax0) plt.cla() self.s0 = Slider(self.ax0, param_names[0], valmin=0.1, valmax=500, valinit=dist.alpha) plt.sca(self.ax1) plt.cla() self.s1 = Slider(self.ax1, param_names[1], valmin=0.2, valmax=50, valinit=dist.beta) try: # clear the slider axis if it exists plt.sca(self.ax2) plt.cla() except ValueError: # if the slider axis does no exist (because it was destroyed by a 2P distribution) then recreate it self.ax2 = plt.axes([0.1, 0.05, 0.8, 0.03], facecolor=self.background_color) self.s2 = Slider(self.ax2, param_names[2], valmin=0, valmax=500, valinit=dist.gamma) elif self.name == 'Lognormal': dist = Lognormal_Distribution(mu=2.5, sigma=0.5, gamma=0) param_names = ['Mu', 'Sigma', 'Gamma'] plt.sca(self.ax0) plt.cla() self.s0 = Slider(self.ax0, param_names[0], valmin=0, valmax=5, valinit=dist.mu) plt.sca(self.ax1) plt.cla() self.s1 = Slider(self.ax1, param_names[1], valmin=0.01, valmax=2, valinit=dist.sigma) try: # clear the slider axis if it exists plt.sca(self.ax2) plt.cla() except ValueError: # if the slider axis does no exist (because it was destroyed by a 2P distribution) then recreate it self.ax2 = plt.axes([0.1, 0.05, 0.8, 0.03], facecolor=self.background_color) self.s2 = Slider(self.ax2, param_names[2], valmin=0, valmax=500, valinit=dist.gamma) elif self.name == 'Normal': dist = Normal_Distribution(mu=0, sigma=10) param_names = ['Mu', 'Sigma', ''] plt.sca(self.ax0) plt.cla() self.s0 = Slider(self.ax0, param_names[0], valmin=-100, valmax=100, valinit=dist.mu) plt.sca(self.ax1) plt.cla() self.s1 = Slider(self.ax1, param_names[1], valmin=0.01, valmax=20, valinit=dist.sigma) try: # clear the slider axis if it exists self.ax2.remove() # this will destroy the axes except KeyError: pass elif self.name == 'Exponential': dist = Exponential_Distribution(Lambda=1, gamma=0) param_names = ['Lambda', 'Gamma', ''] plt.sca(self.ax0) plt.cla() self.s0 = Slider(self.ax0, param_names[0], valmin=0.001, valmax=5, valinit=dist.Lambda) plt.sca(self.ax1) plt.cla() self.s1 = Slider(self.ax1, param_names[1], valmin=0, valmax=500, valinit=dist.gamma) try: # clear the slider axis if it exists self.ax2.remove() # this will destroy the axes except KeyError: pass elif self.name == 'Beta': dist = Beta_Distribution(alpha=2, beta=2) param_names = ['Alpha', 'Beta', ''] plt.sca(self.ax0) plt.cla() self.s0 = Slider(self.ax0, param_names[0], valmin=0.01, valmax=5, valinit=dist.alpha) plt.sca(self.ax1) plt.cla() self.s1 = Slider(self.ax1, param_names[1], valmin=0.01, valmax=5, valinit=dist.beta) try: # clear the slider axis if it exists self.ax2.remove() # this will destroy the axes except KeyError: pass else: raise ValueError(str(self.name + ' is an unknown distribution name')) plt.suptitle(dist.param_title_long, fontsize=15) distribution_explorer.__update_params(None, self) distribution_explorer.__interactive(self) plt.draw()
def __init__(self, distribution=None, include_location_shifted=True, show_plot=True, print_results=True, monte_carlo_trials=1000, number_of_distributions_to_show=3): if type(distribution) not in [ Weibull_Distribution, Normal_Distribution, Lognormal_Distribution, Exponential_Distribution, Gamma_Distribution, Beta_Distribution ]: raise ValueError( 'distribution must be a probability distribution object from the reliability.Distributions module. First define the distribution using Reliability.Distributions.___' ) if monte_carlo_trials < 100: print( 'WARNING: Using less than 100 monte carlo trials will lead to extremely inaccurate results. The number of monte carlo trials has been changed to 100 to ensure accuracy.' ) monte_carlo_trials = 100 elif monte_carlo_trials >= 100 and monte_carlo_trials < 1000: print( 'WARNING: Using less than 1000 monte carlo trials will lead to inaccurate results.' ) if monte_carlo_trials > 10000: print( 'The recommended number of monte carlo trials is 1000. Using over 10000 may take a long time to calculate.' ) RVS = distribution.random_samples( number_of_samples=monte_carlo_trials ) # draw random samples from the original distribution # filter out negative values RVS_filtered = [] negative_values_error = False for item in RVS: if item > 0: RVS_filtered.append(item) else: negative_values_error = True if negative_values_error is True: print( 'WARNING: The input distribution has non-negligible area for x<0. Monte carlo samples from this region have been discarded to enable other distributions to be fitted.' ) fitted_results = Fit_Everything( failures=RVS_filtered, print_results=False, show_probability_plot=False, show_histogram_plot=False, show_PP_plot=False ) # fit all distributions to the filtered samples ranked_distributions = list(fitted_results.results.index.values) ranked_distributions.remove( distribution.name2 ) # removes the fitted version of the original distribution ranked_distributions_objects = [] ranked_distributions_labels = [] sigfig = 2 for dist_name in ranked_distributions: if dist_name == 'Weibull_2P': ranked_distributions_objects.append( Weibull_Distribution(alpha=fitted_results.Weibull_2P_alpha, beta=fitted_results.Weibull_2P_beta)) ranked_distributions_labels.append( str('Weibull_2P (α=' + str(round(fitted_results.Weibull_2P_alpha, sigfig)) + ',β=' + str(round(fitted_results.Weibull_2P_beta, sigfig)) + ')')) elif dist_name == 'Gamma_2P': ranked_distributions_objects.append( Gamma_Distribution(alpha=fitted_results.Gamma_2P_alpha, beta=fitted_results.Gamma_2P_beta)) ranked_distributions_labels.append( str('Gamma_2P (α=' + str(round(fitted_results.Gamma_2P_alpha, sigfig)) + ',β=' + str(round(fitted_results.Gamma_2P_beta, sigfig)) + ')')) elif dist_name == 'Normal_2P': ranked_distributions_objects.append( Normal_Distribution(mu=fitted_results.Normal_2P_mu, sigma=fitted_results.Normal_2P_sigma)) ranked_distributions_labels.append( str('Normal_2P (μ=' + str(round(fitted_results.Normal_2P_mu, sigfig)) + ',σ=' + str(round(fitted_results.Normal_2P_sigma, sigfig)) + ')')) elif dist_name == 'Lognormal_2P': ranked_distributions_objects.append( Lognormal_Distribution( mu=fitted_results.Lognormal_2P_mu, sigma=fitted_results.Lognormal_2P_sigma)) ranked_distributions_labels.append( str('Lognormal_2P (μ=' + str(round(fitted_results.Lognormal_2P_mu, sigfig)) + ',σ=' + str(round(fitted_results.Lognormal_2P_sigma, sigfig)) + ')')) elif dist_name == 'Exponential_1P': ranked_distributions_objects.append( Exponential_Distribution( Lambda=fitted_results.Expon_1P_lambda)) ranked_distributions_labels.append( str('Exponential_1P (lambda=' + str(round(fitted_results.Expon_1P_lambda, sigfig)) + ')')) elif dist_name == 'Beta_2P': ranked_distributions_objects.append( Beta_Distribution(alpha=fitted_results.Beta_2P_alpha, beta=fitted_results.Beta_2P_beta)) ranked_distributions_labels.append( str('Beta_2P (α=' + str(round(fitted_results.Beta_2P_alpha, sigfig)) + ',β=' + str(round(fitted_results.Beta_2P_beta, sigfig)) + ')')) if include_location_shifted is True: if dist_name == 'Weibull_3P': ranked_distributions_objects.append( Weibull_Distribution( alpha=fitted_results.Weibull_3P_alpha, beta=fitted_results.Weibull_3P_beta, gamma=fitted_results.Weibull_3P_gamma)) ranked_distributions_labels.append( str('Weibull_3P (α=' + str( round(fitted_results.Weibull_3P_alpha, sigfig)) + ',β=' + str(round(fitted_results.Weibull_3P_beta, sigfig)) + ',γ=' + str(round(fitted_results.Weibull_3P_gamma, sigfig)) + ')')) elif dist_name == 'Gamma_3P': ranked_distributions_objects.append( Gamma_Distribution( alpha=fitted_results.Gamma_3P_alpha, beta=fitted_results.Gamma_3P_beta, gamma=fitted_results.Gamma_3P_gamma)) ranked_distributions_labels.append( str('Gamma_3P (α=' + str(round(fitted_results.Gamma_3P_alpha, sigfig)) + ',β=' + str(round(fitted_results.Gamma_3P_beta, sigfig)) + ',γ=' + str(round(fitted_results.Gamma_3P_gamma, sigfig)) + ')')) elif dist_name == 'Lognormal_3P': ranked_distributions_objects.append( Lognormal_Distribution( mu=fitted_results.Lognormal_3P_mu, sigma=fitted_results.Lognormal_3P_sigma, gamma=fitted_results.Lognormal_3P_gamma)) ranked_distributions_labels.append( str('Lognormal_3P (μ=' + str( round(fitted_results.Lognormal_3P_mu, sigfig)) + ',σ=' + str( round(fitted_results.Lognormal_3P_sigma, sigfig)) + ',γ=' + str( round(fitted_results.Lognormal_3P_gamma, sigfig)) + ')')) elif dist_name == 'Exponential_2P': ranked_distributions_objects.append( Exponential_Distribution( Lambda=fitted_results.Expon_1P_lambda, gamma=fitted_results.Expon_2P_gamma)) ranked_distributions_labels.append( str('Exponential_1P (lambda=' + str( round(fitted_results.Expon_1P_lambda, sigfig)) + ',γ=' + str(round(fitted_results.Expon_2P_gamma, sigfig)) + ')')) number_of_distributions_fitted = len(ranked_distributions_objects) self.results = ranked_distributions_objects self.most_similar_distribution = ranked_distributions_objects[0] if print_results is True: print('The input distribution was:') print(distribution.param_title_long) if number_of_distributions_fitted < number_of_distributions_to_show: number_of_distributions_to_show = number_of_distributions_fitted print('\nThe top', number_of_distributions_to_show, 'most similar distributions are:') counter = 0 while counter < number_of_distributions_to_show and counter < number_of_distributions_fitted: dist = ranked_distributions_objects[counter] print(dist.param_title_long) counter += 1 if show_plot is True: plt.figure(figsize=(14, 6)) plt.suptitle( str('Plot of similar distributions to ' + distribution.param_title_long)) counter = 0 xlower = distribution.quantile(0.001) xupper = distribution.quantile(0.999) x_delta = xupper - xlower plt.subplot(121) distribution.PDF(label='Input distribution', linestyle='--') while counter < number_of_distributions_to_show and counter < number_of_distributions_fitted: ranked_distributions_objects[counter].PDF( label=ranked_distributions_labels[counter]) counter += 1 plt.xlim([xlower - x_delta * 0.1, xupper + x_delta * 0.1]) plt.legend() plt.title('PDF') counter = 0 plt.subplot(122) distribution.CDF(label='Input distribution', linestyle='--') while counter < number_of_distributions_to_show and counter < number_of_distributions_fitted: ranked_distributions_objects[counter].CDF( label=ranked_distributions_labels[counter]) counter += 1 plt.xlim([xlower - x_delta * 0.1, xupper + x_delta * 0.1]) plt.legend() plt.title('CDF') plt.subplots_adjust(left=0.08, right=0.95) plt.show()
def test_Normal_Distribution(): dist = Normal_Distribution(mu=5, sigma=2) assert dist.mean == 5 assert dist.standard_deviation == 2 assert dist.variance == 4
def test_Normal_Distribution(): dist = Normal_Distribution(mu=5, sigma=2) assert_allclose(dist.mean, 5, rtol=rtol, atol=atol) assert_allclose(dist.standard_deviation, 2, rtol=rtol, atol=atol) assert_allclose(dist.variance, 4, rtol=rtol, atol=atol) assert_allclose(dist.skewness, 0, rtol=rtol, atol=atol) assert_allclose(dist.kurtosis, 3, rtol=rtol, atol=atol) assert dist.param_title_long == 'Normal Distribution (μ=5,σ=2)' assert_allclose(dist.quantile(0.2), 3.3167575328541714, rtol=rtol, atol=atol) assert_allclose(dist.inverse_SF(q=0.7), 3.9511989745839187, rtol=rtol, atol=atol) assert_allclose(dist.mean_residual_life(10), 0.6454895953278145, rtol=rtol, atol=atol) xvals = [0, dist.quantile(0.001), dist.quantile(0.01), dist.quantile(0.1), dist.quantile(0.9), dist.quantile(0.99), dist.quantile(0.999)] assert_allclose(dist.PDF(xvals=xvals, show_plot=False), [0.00876415024678427, 0.001683545038531998, 0.01332607110172904, 0.08774916596624342, 0.08774916596624342, 0.01332607110172904, 0.001683545038531998], rtol=rtol, atol=atol) assert_allclose(dist.CDF(xvals=xvals, show_plot=False), [0.006209665325776132, 0.001, 0.01, 0.1, 0.9, 0.99, 0.999], rtol=rtol, atol=atol) assert_allclose(dist.SF(xvals=xvals, show_plot=False), [0.9937903346742238, 0.999, 0.99, 0.9, 0.1, 0.01, 0.001], rtol=rtol, atol=atol) assert_allclose(dist.HF(xvals=xvals, show_plot=False), [0.00881891274345837, 0.0016852302688007987, 0.013460677880534384, 0.09749907329582604, 0.8774916596624335, 1.332607110172904, 1.6835450385319983], rtol=rtol, atol=atol) assert_allclose(dist.CHF(xvals=xvals, show_plot=False), [0.006229025485860027, 0.0010005003335835344, 0.01005033585350145, 0.1053605156578264, 2.302585092994045, 4.605170185988091, 6.907755278982137], rtol=rtol, atol=atol)