예제 #1
0
def test_Fit_Normal_2P():
    dist = Normal_Distribution(mu=50, sigma=8)
    rawdata = dist.random_samples(20, seed=5)
    data = make_right_censored_data(data=rawdata, threshold=dist.mean)
    MLE = Fit_Normal_2P(failures=data.failures,
                        right_censored=data.right_censored,
                        method='MLE',
                        show_probability_plot=False,
                        print_results=False)
    assert_allclose(MLE.mu, 49.01641649924297, rtol=rtol, atol=atol)
    assert_allclose(MLE.sigma, 6.653242350482225, rtol=rtol, atol=atol)
    assert_allclose(MLE.AICc, 91.15205546551952, rtol=rtol, atol=atol)
    assert_allclose(MLE.BIC, 92.43763765968633, rtol=rtol, atol=atol)
    assert_allclose(MLE.loglik, -43.223086556289175, rtol=rtol, atol=atol)
    assert_allclose(MLE.AD, 63.64069171746617, rtol=rtol, atol=atol)
    assert_allclose(MLE.Cov_mu_sigma, 1.0395705891908218, rtol=rtol, atol=atol)

    LS = Fit_Normal_2P(failures=data.failures,
                       right_censored=data.right_censored,
                       method='LS',
                       show_probability_plot=False,
                       print_results=False)
    assert_allclose(LS.mu, 48.90984235374872, rtol=rtol, atol=atol)
    assert_allclose(LS.sigma, 6.990098677785364, rtol=rtol, atol=atol)
    assert_allclose(LS.AICc, 91.21601631804141, rtol=rtol, atol=atol)
    assert_allclose(LS.BIC, 92.50159851220822, rtol=rtol, atol=atol)
    assert_allclose(LS.loglik, -43.25506698255012, rtol=rtol, atol=atol)
    assert_allclose(LS.AD, 63.657853523044515, rtol=rtol, atol=atol)
    assert_allclose(LS.Cov_mu_sigma, 1.0973540350799618, rtol=rtol, atol=atol)
예제 #2
0
def test_stress_strength_normal():
    stress = Normal_Distribution(mu=50, sigma=5)
    strength = Normal_Distribution(mu=80, sigma=7)
    result = stress_strength_normal(stress=stress,
                                    strength=strength,
                                    print_results=False,
                                    show_plot=False)
    assert_allclose(result, 0.00024384404803800858, rtol=rtol, atol=atol)
def test_Probability_of_failure_normdist():
    stress = Normal_Distribution(mu=50, sigma=5)
    strength = Normal_Distribution(mu=80, sigma=7)
    result = Probability_of_failure_normdist(stress=stress,
                                             strength=strength,
                                             print_results=False,
                                             show_distribution_plot=False)
    assert_allclose(result, 0.00024384404803800858, rtol=rtol, atol=atol)
예제 #4
0
def test_Fit_Normal_2P():
    dist = Normal_Distribution(mu=50,sigma=8)
    rawdata = dist.random_samples(20, seed=5)
    data = make_right_censored_data(data=rawdata, threshold=dist.mean)
    fit = Fit_Normal_2P(failures=data.failures, right_censored=data.right_censored, show_probability_plot=False, print_results=False)
    assert_allclose(fit.mu, 49.01641765388186,rtol=rtol,atol=atol)
    assert_allclose(fit.sigma, 6.653242153943476,rtol=rtol,atol=atol)
    assert_allclose(fit.AICc, 91.15205546551915,rtol=rtol,atol=atol)
    assert_allclose(fit.Cov_mu_sigma, 1.0395713921235965,rtol=rtol,atol=atol)
    assert_allclose(fit.loglik, -43.22308655628899,rtol=rtol,atol=atol)
 def __update_params(_, self):
     value1 = self.s0.val
     value2 = self.s1.val
     value3 = self.s2.val
     if self.name == 'Weibull':
         dist = Weibull_Distribution(alpha=value1, beta=value2, gamma=value3)
     elif self.name == 'Loglogistic':
         dist = Loglogistic_Distribution(alpha=value1, beta=value2, gamma=value3)
     elif self.name == 'Gamma':
         dist = Gamma_Distribution(alpha=value1, beta=value2, gamma=value3)
     elif self.name == 'Loglogistic':
         dist = Loglogistic_Distribution(alpha=value1, beta=value2, gamma=value3)
     elif self.name == 'Lognormal':
         dist = Lognormal_Distribution(mu=value1, sigma=value2, gamma=value3)
     elif self.name == 'Beta':
         dist = Beta_Distribution(alpha=value1, beta=value2)
     elif self.name == 'Normal':
         dist = Normal_Distribution(mu=value1, sigma=value2)
     elif self.name == 'Exponential':
         dist = Exponential_Distribution(Lambda=value1, gamma=value2)
     else:
         raise ValueError(str(self.name + ' is an unknown distribution name'))
     plt.sca(self.ax_pdf)
     plt.cla()
     dist.PDF()
     plt.title('PDF')
     plt.xlabel('')
     plt.ylabel('')
     plt.sca(self.ax_cdf)
     plt.cla()
     dist.CDF()
     plt.title('CDF')
     plt.xlabel('')
     plt.ylabel('')
     plt.sca(self.ax_sf)
     plt.cla()
     dist.SF()
     plt.title('SF')
     plt.xlabel('')
     plt.ylabel('')
     plt.sca(self.ax_hf)
     plt.cla()
     dist.HF()
     plt.title('HF')
     plt.xlabel('')
     plt.ylabel('')
     plt.sca(self.ax_chf)
     plt.cla()
     dist.CHF()
     plt.title('CHF')
     plt.xlabel('')
     plt.ylabel('')
     plt.subplots_adjust(left=0.07, right=0.98, top=0.9, bottom=0.25, wspace=0.18, hspace=0.30)
     plt.suptitle(dist.param_title_long, fontsize=15)
     plt.draw()
예제 #6
0
def test_Mixture_Model():
    distributions = [Weibull_Distribution(alpha=30, beta=2), Normal_Distribution(mu=35, sigma=5)]
    dist = Mixture_Model(distributions=distributions, proportions=[0.6,0.4])
    assert_allclose(dist.mean, 29.952084649328917, rtol=rtol, atol=atol)
    assert_allclose(dist.standard_deviation, 11.95293368817564, rtol=rtol, atol=atol)
    assert_allclose(dist.variance, 142.87262375392413, rtol=rtol, atol=atol)
    assert_allclose(dist.skewness, 0.015505959874527537, rtol=rtol, atol=atol)
    assert_allclose(dist.kurtosis, 3.4018343377801674, rtol=rtol, atol=atol)
    assert dist.name2 == 'Mixture using 2 distributions'
    assert_allclose(dist.quantile(0.2), 19.085648329240094, rtol=rtol, atol=atol)
    assert_allclose(dist.inverse_SF(q=0.7), 24.540270766923847, rtol=rtol, atol=atol)
    assert_allclose(dist.mean_residual_life(20), 14.686456940211107, rtol=rtol, atol=atol)
    xvals = [dist.quantile(0.001), dist.quantile(0.01), dist.quantile(0.1), dist.quantile(0.9), dist.quantile(0.99), dist.quantile(0.999)]
    assert_allclose(dist.PDF(xvals=xvals, show_plot=False), [0.0016309, 0.00509925, 0.01423464, 0.01646686, 0.00134902, 0.00016862], rtol=rtol, atol=atol)
    assert_allclose(dist.CDF(xvals=xvals, show_plot=False), [0.00099994, 0.00999996, 0.10000006, 0.90000056, 0.99000001, 0.999], rtol=rtol, atol=atol)
    assert_allclose(dist.SF(xvals=xvals, show_plot=False), [0.99900006, 0.99000004, 0.89999994, 0.09999944, 0.00999999, 0.001], rtol=rtol, atol=atol)
    assert_allclose(dist.HF(xvals=xvals, show_plot=False), [0.00163253, 0.00515076, 0.01581627, 0.16466956, 0.13490177, 0.16861429], rtol=rtol, atol=atol)
    assert_allclose(dist.CHF(xvals=xvals, show_plot=False), [1.00043950e-03, 1.00502998e-02, 1.05360581e-01, 2.30259070e+00, 4.60517090e+00, 6.90775056e+00], rtol=rtol, atol=atol)
예제 #7
0
def test_Competing_Risks_Model():
    distributions = [Weibull_Distribution(alpha=30, beta=2), Normal_Distribution(mu=35, sigma=5)]
    dist = Competing_Risks_Model(distributions=distributions)
    assert_allclose(dist.mean, 23.707625152181073, rtol=rtol, atol=atol)
    assert_allclose(dist.standard_deviation, 9.832880925543204, rtol=rtol, atol=atol)
    assert_allclose(dist.variance, 96.68554729591138, rtol=rtol, atol=atol)
    assert_allclose(dist.skewness, -0.20597940178753704, rtol=rtol, atol=atol)
    assert_allclose(dist.kurtosis, 2.1824677678598667, rtol=rtol, atol=atol)
    assert dist.name2 == 'Competing risks using 2 distributions'
    assert_allclose(dist.quantile(0.2), 14.170859470541174, rtol=rtol, atol=atol)
    assert_allclose(dist.inverse_SF(q=0.7), 17.908811127053173, rtol=rtol, atol=atol)
    assert_allclose(dist.mean_residual_life(20), 9.862745898092886, rtol=rtol, atol=atol)
    xvals = [dist.quantile(0.001), dist.quantile(0.01), dist.quantile(0.1), dist.quantile(0.9), dist.quantile(0.99), dist.quantile(0.999)]
    assert_allclose(dist.PDF(xvals=xvals, show_plot=False), [0.00210671, 0.00661657, 0.01947571, 0.02655321, 0.00474024, 0.00062978], rtol=rtol, atol=atol)
    assert_allclose(dist.CDF(xvals=xvals, show_plot=False), [0.0010001,  0.00999995, 0.09999943, 0.90000184, 0.99000021, 0.99900003], rtol=rtol, atol=atol)
    assert_allclose(dist.SF(xvals=xvals, show_plot=False), [0.9989999,  0.99000005, 0.90000057, 0.09999816, 0.00999979, 0.00099997], rtol=rtol, atol=atol)
    assert_allclose(dist.HF(xvals=xvals, show_plot=False), [0.00210882, 0.00668341, 0.02163966, 0.265537, 0.47403341, 0.62980068], rtol=rtol, atol=atol)
    assert_allclose(dist.CHF(xvals=xvals, show_plot=False), [1.00059934e-03, 1.00502826e-02, 1.05359884e-01, 2.30260350e+00, 4.60519097e+00, 6.90778668e+00], rtol=rtol, atol=atol)
예제 #8
0
    def __init__(self,
                 distribution,
                 include_location_shifted=True,
                 show_plot=True,
                 print_results=True,
                 number_of_distributions_to_show=3):
        # ensure the input is a distribution object
        if type(distribution) not in [
                Weibull_Distribution, Normal_Distribution,
                Lognormal_Distribution, Exponential_Distribution,
                Gamma_Distribution, Beta_Distribution
        ]:
            raise ValueError(
                'distribution must be a probability distribution object from the reliability.Distributions module. First define the distribution using Reliability.Distributions.___'
            )

        # sample the CDF from 0.001 to 0.999. These samples will be used to fit all other distributions.
        RVS = distribution.quantile(
            np.linspace(0.001, 0.999, 698)
        )  # 698 samples is the ideal number for the points to align. Evidenced using plot_points.

        # filter out negative values
        RVS_filtered = []
        negative_values_error = False
        for item in RVS:
            if item > 0:
                RVS_filtered.append(item)
            else:
                negative_values_error = True
        if negative_values_error is True:
            print(
                'WARNING: The input distribution has non-negligible area for x<0. Samples from this region have been discarded to enable other distributions to be fitted.'
            )

        fitted_results = Fit_Everything(
            failures=RVS_filtered,
            print_results=False,
            show_probability_plot=False,
            show_histogram_plot=False,
            show_PP_plot=False
        )  # fit all distributions to the filtered samples
        ranked_distributions = list(fitted_results.results.index.values)
        ranked_distributions.remove(
            distribution.name2
        )  # removes the fitted version of the original distribution

        ranked_distributions_objects = []
        ranked_distributions_labels = []
        sigfig = 2
        for dist_name in ranked_distributions:
            if dist_name == 'Weibull_2P':
                ranked_distributions_objects.append(
                    Weibull_Distribution(alpha=fitted_results.Weibull_2P_alpha,
                                         beta=fitted_results.Weibull_2P_beta))
                ranked_distributions_labels.append(
                    str('Weibull_2P (α=' +
                        str(round(fitted_results.Weibull_2P_alpha, sigfig)) +
                        ',β=' +
                        str(round(fitted_results.Weibull_2P_beta, sigfig)) +
                        ')'))
            elif dist_name == 'Gamma_2P':
                ranked_distributions_objects.append(
                    Gamma_Distribution(alpha=fitted_results.Gamma_2P_alpha,
                                       beta=fitted_results.Gamma_2P_beta))
                ranked_distributions_labels.append(
                    str('Gamma_2P (α=' +
                        str(round(fitted_results.Gamma_2P_alpha, sigfig)) +
                        ',β=' +
                        str(round(fitted_results.Gamma_2P_beta, sigfig)) +
                        ')'))
            elif dist_name == 'Normal_2P':
                ranked_distributions_objects.append(
                    Normal_Distribution(mu=fitted_results.Normal_2P_mu,
                                        sigma=fitted_results.Normal_2P_sigma))
                ranked_distributions_labels.append(
                    str('Normal_2P (μ=' +
                        str(round(fitted_results.Normal_2P_mu, sigfig)) +
                        ',σ=' +
                        str(round(fitted_results.Normal_2P_sigma, sigfig)) +
                        ')'))
            elif dist_name == 'Lognormal_2P':
                ranked_distributions_objects.append(
                    Lognormal_Distribution(
                        mu=fitted_results.Lognormal_2P_mu,
                        sigma=fitted_results.Lognormal_2P_sigma))
                ranked_distributions_labels.append(
                    str('Lognormal_2P (μ=' +
                        str(round(fitted_results.Lognormal_2P_mu, sigfig)) +
                        ',σ=' +
                        str(round(fitted_results.Lognormal_2P_sigma, sigfig)) +
                        ')'))
            elif dist_name == 'Exponential_1P':
                ranked_distributions_objects.append(
                    Exponential_Distribution(
                        Lambda=fitted_results.Expon_1P_lambda))
                ranked_distributions_labels.append(
                    str('Exponential_1P (lambda=' +
                        str(round(fitted_results.Expon_1P_lambda, sigfig)) +
                        ')'))
            elif dist_name == 'Beta_2P':
                ranked_distributions_objects.append(
                    Beta_Distribution(alpha=fitted_results.Beta_2P_alpha,
                                      beta=fitted_results.Beta_2P_beta))
                ranked_distributions_labels.append(
                    str('Beta_2P (α=' +
                        str(round(fitted_results.Beta_2P_alpha, sigfig)) +
                        ',β=' +
                        str(round(fitted_results.Beta_2P_beta, sigfig)) + ')'))

            if include_location_shifted is True:
                if dist_name == 'Weibull_3P':
                    ranked_distributions_objects.append(
                        Weibull_Distribution(
                            alpha=fitted_results.Weibull_3P_alpha,
                            beta=fitted_results.Weibull_3P_beta,
                            gamma=fitted_results.Weibull_3P_gamma))
                    ranked_distributions_labels.append(
                        str('Weibull_3P (α=' + str(
                            round(fitted_results.Weibull_3P_alpha, sigfig)) +
                            ',β=' +
                            str(round(fitted_results.Weibull_3P_beta,
                                      sigfig)) + ',γ=' +
                            str(round(fitted_results.Weibull_3P_gamma,
                                      sigfig)) + ')'))
                elif dist_name == 'Gamma_3P':
                    ranked_distributions_objects.append(
                        Gamma_Distribution(
                            alpha=fitted_results.Gamma_3P_alpha,
                            beta=fitted_results.Gamma_3P_beta,
                            gamma=fitted_results.Gamma_3P_gamma))
                    ranked_distributions_labels.append(
                        str('Gamma_3P (α=' +
                            str(round(fitted_results.Gamma_3P_alpha, sigfig)) +
                            ',β=' +
                            str(round(fitted_results.Gamma_3P_beta, sigfig)) +
                            ',γ=' +
                            str(round(fitted_results.Gamma_3P_gamma, sigfig)) +
                            ')'))
                elif dist_name == 'Lognormal_3P':
                    ranked_distributions_objects.append(
                        Lognormal_Distribution(
                            mu=fitted_results.Lognormal_3P_mu,
                            sigma=fitted_results.Lognormal_3P_sigma,
                            gamma=fitted_results.Lognormal_3P_gamma))
                    ranked_distributions_labels.append(
                        str('Lognormal_3P (μ=' + str(
                            round(fitted_results.Lognormal_3P_mu, sigfig)) +
                            ',σ=' + str(
                                round(fitted_results.Lognormal_3P_sigma,
                                      sigfig)) + ',γ=' +
                            str(
                                round(fitted_results.Lognormal_3P_gamma,
                                      sigfig)) + ')'))
                elif dist_name == 'Exponential_2P':
                    ranked_distributions_objects.append(
                        Exponential_Distribution(
                            Lambda=fitted_results.Expon_1P_lambda,
                            gamma=fitted_results.Expon_2P_gamma))
                    ranked_distributions_labels.append(
                        str('Exponential_1P (lambda=' + str(
                            round(fitted_results.Expon_1P_lambda, sigfig)) +
                            ',γ=' +
                            str(round(fitted_results.Expon_2P_gamma, sigfig)) +
                            ')'))

        number_of_distributions_fitted = len(ranked_distributions_objects)
        self.results = ranked_distributions_objects
        self.most_similar_distribution = ranked_distributions_objects[0]
        if print_results is True:
            print('The input distribution was:')
            print(distribution.param_title_long)
            if number_of_distributions_fitted < number_of_distributions_to_show:
                number_of_distributions_to_show = number_of_distributions_fitted
            print('\nThe top', number_of_distributions_to_show,
                  'most similar distributions are:')
            counter = 0
            while counter < number_of_distributions_to_show and counter < number_of_distributions_fitted:
                dist = ranked_distributions_objects[counter]
                print(dist.param_title_long)
                counter += 1

        if show_plot is True:
            plt.figure(figsize=(14, 6))
            plt.suptitle(
                str('Plot of similar distributions to ' +
                    distribution.param_title_long))
            counter = 0
            xlower = distribution.quantile(0.001)
            xupper = distribution.quantile(0.999)
            x_delta = xupper - xlower
            plt.subplot(121)
            distribution.PDF(label=str('Input distribution [' +
                                       distribution.name2 + ']'),
                             linestyle='--')
            while counter < number_of_distributions_to_show and counter < number_of_distributions_fitted:
                ranked_distributions_objects[counter].PDF(
                    label=ranked_distributions_labels[counter])
                counter += 1
            plt.xlim([xlower - x_delta * 0.1, xupper + x_delta * 0.1])
            plt.legend()
            plt.title('PDF')
            counter = 0
            plt.subplot(122)
            distribution.CDF(label=str('Input distribution [' +
                                       distribution.name2 + ']'),
                             linestyle='--')
            while counter < number_of_distributions_to_show and counter < number_of_distributions_fitted:
                ranked_distributions_objects[counter].CDF(
                    label=ranked_distributions_labels[counter])
                counter += 1
            plt.xlim([xlower - x_delta * 0.1, xupper + x_delta * 0.1])
            plt.legend()
            plt.title('CDF')
            plt.subplots_adjust(left=0.08, right=0.95)
            plt.show()
 def __update_distribution(name, self):
     self.name = name
     if self.name == 'Weibull':
         dist = Weibull_Distribution(alpha=100, beta=2, gamma=0)
         param_names = ['Alpha', 'Beta', 'Gamma']
         plt.sca(self.ax0)
         plt.cla()
         self.s0 = Slider(self.ax0, param_names[0], valmin=0.1, valmax=500, valinit=dist.alpha)
         plt.sca(self.ax1)
         plt.cla()
         self.s1 = Slider(self.ax1, param_names[1], valmin=0.2, valmax=25, valinit=dist.beta)
         try:  # clear the slider axis if it exists
             plt.sca(self.ax2)
             plt.cla()
         except ValueError:  # if the slider axis does no exist (because it was destroyed by a 2P distribution) then recreate it
             self.ax2 = plt.axes([0.1, 0.05, 0.8, 0.03], facecolor=self.background_color)
         self.s2 = Slider(self.ax2, param_names[2], valmin=0, valmax=500, valinit=dist.gamma)
     elif self.name == 'Gamma':
         dist = Gamma_Distribution(alpha=100, beta=5, gamma=0)
         param_names = ['Alpha', 'Beta', 'Gamma']
         plt.sca(self.ax0)
         plt.cla()
         self.s0 = Slider(self.ax0, param_names[0], valmin=0.1, valmax=500, valinit=dist.alpha)
         plt.sca(self.ax1)
         plt.cla()
         self.s1 = Slider(self.ax1, param_names[1], valmin=0.2, valmax=25, valinit=dist.beta)
         try:  # clear the slider axis if it exists
             plt.sca(self.ax2)
             plt.cla()
         except ValueError:  # if the slider axis does no exist (because it was destroyed by a 2P distribution) then recreate it
             self.ax2 = plt.axes([0.1, 0.05, 0.8, 0.03], facecolor=self.background_color)
         self.s2 = Slider(self.ax2, param_names[2], valmin=0, valmax=500, valinit=dist.gamma)
     elif self.name == 'Loglogistic':
         dist = Loglogistic_Distribution(alpha=100, beta=8, gamma=0)
         param_names = ['Alpha', 'Beta', 'Gamma']
         plt.sca(self.ax0)
         plt.cla()
         self.s0 = Slider(self.ax0, param_names[0], valmin=0.1, valmax=500, valinit=dist.alpha)
         plt.sca(self.ax1)
         plt.cla()
         self.s1 = Slider(self.ax1, param_names[1], valmin=0.2, valmax=50, valinit=dist.beta)
         try:  # clear the slider axis if it exists
             plt.sca(self.ax2)
             plt.cla()
         except ValueError:  # if the slider axis does no exist (because it was destroyed by a 2P distribution) then recreate it
             self.ax2 = plt.axes([0.1, 0.05, 0.8, 0.03], facecolor=self.background_color)
         self.s2 = Slider(self.ax2, param_names[2], valmin=0, valmax=500, valinit=dist.gamma)
     elif self.name == 'Lognormal':
         dist = Lognormal_Distribution(mu=2.5, sigma=0.5, gamma=0)
         param_names = ['Mu', 'Sigma', 'Gamma']
         plt.sca(self.ax0)
         plt.cla()
         self.s0 = Slider(self.ax0, param_names[0], valmin=0, valmax=5, valinit=dist.mu)
         plt.sca(self.ax1)
         plt.cla()
         self.s1 = Slider(self.ax1, param_names[1], valmin=0.01, valmax=2, valinit=dist.sigma)
         try:  # clear the slider axis if it exists
             plt.sca(self.ax2)
             plt.cla()
         except ValueError:  # if the slider axis does no exist (because it was destroyed by a 2P distribution) then recreate it
             self.ax2 = plt.axes([0.1, 0.05, 0.8, 0.03], facecolor=self.background_color)
         self.s2 = Slider(self.ax2, param_names[2], valmin=0, valmax=500, valinit=dist.gamma)
     elif self.name == 'Normal':
         dist = Normal_Distribution(mu=0, sigma=10)
         param_names = ['Mu', 'Sigma', '']
         plt.sca(self.ax0)
         plt.cla()
         self.s0 = Slider(self.ax0, param_names[0], valmin=-100, valmax=100, valinit=dist.mu)
         plt.sca(self.ax1)
         plt.cla()
         self.s1 = Slider(self.ax1, param_names[1], valmin=0.01, valmax=20, valinit=dist.sigma)
         try:  # clear the slider axis if it exists
             self.ax2.remove()  # this will destroy the axes
         except KeyError:
             pass
     elif self.name == 'Exponential':
         dist = Exponential_Distribution(Lambda=1, gamma=0)
         param_names = ['Lambda', 'Gamma', '']
         plt.sca(self.ax0)
         plt.cla()
         self.s0 = Slider(self.ax0, param_names[0], valmin=0.001, valmax=5, valinit=dist.Lambda)
         plt.sca(self.ax1)
         plt.cla()
         self.s1 = Slider(self.ax1, param_names[1], valmin=0, valmax=500, valinit=dist.gamma)
         try:  # clear the slider axis if it exists
             self.ax2.remove()  # this will destroy the axes
         except KeyError:
             pass
     elif self.name == 'Beta':
         dist = Beta_Distribution(alpha=2, beta=2)
         param_names = ['Alpha', 'Beta', '']
         plt.sca(self.ax0)
         plt.cla()
         self.s0 = Slider(self.ax0, param_names[0], valmin=0.01, valmax=5, valinit=dist.alpha)
         plt.sca(self.ax1)
         plt.cla()
         self.s1 = Slider(self.ax1, param_names[1], valmin=0.01, valmax=5, valinit=dist.beta)
         try:  # clear the slider axis if it exists
             self.ax2.remove()  # this will destroy the axes
         except KeyError:
             pass
     else:
         raise ValueError(str(self.name + ' is an unknown distribution name'))
     plt.suptitle(dist.param_title_long, fontsize=15)
     distribution_explorer.__update_params(None, self)
     distribution_explorer.__interactive(self)
     plt.draw()
예제 #10
0
    def __init__(self,
                 distribution=None,
                 include_location_shifted=True,
                 show_plot=True,
                 print_results=True,
                 monte_carlo_trials=1000,
                 number_of_distributions_to_show=3):
        if type(distribution) not in [
                Weibull_Distribution, Normal_Distribution,
                Lognormal_Distribution, Exponential_Distribution,
                Gamma_Distribution, Beta_Distribution
        ]:
            raise ValueError(
                'distribution must be a probability distribution object from the reliability.Distributions module. First define the distribution using Reliability.Distributions.___'
            )
        if monte_carlo_trials < 100:
            print(
                'WARNING: Using less than 100 monte carlo trials will lead to extremely inaccurate results. The number of monte carlo trials has been changed to 100 to ensure accuracy.'
            )
            monte_carlo_trials = 100
        elif monte_carlo_trials >= 100 and monte_carlo_trials < 1000:
            print(
                'WARNING: Using less than 1000 monte carlo trials will lead to inaccurate results.'
            )
        if monte_carlo_trials > 10000:
            print(
                'The recommended number of monte carlo trials is 1000. Using over 10000 may take a long time to calculate.'
            )

        RVS = distribution.random_samples(
            number_of_samples=monte_carlo_trials
        )  # draw random samples from the original distribution
        # filter out negative values
        RVS_filtered = []
        negative_values_error = False
        for item in RVS:
            if item > 0:
                RVS_filtered.append(item)
            else:
                negative_values_error = True
        if negative_values_error is True:
            print(
                'WARNING: The input distribution has non-negligible area for x<0. Monte carlo samples from this region have been discarded to enable other distributions to be fitted.'
            )

        fitted_results = Fit_Everything(
            failures=RVS_filtered,
            print_results=False,
            show_probability_plot=False,
            show_histogram_plot=False,
            show_PP_plot=False
        )  # fit all distributions to the filtered samples
        ranked_distributions = list(fitted_results.results.index.values)
        ranked_distributions.remove(
            distribution.name2
        )  # removes the fitted version of the original distribution

        ranked_distributions_objects = []
        ranked_distributions_labels = []
        sigfig = 2
        for dist_name in ranked_distributions:
            if dist_name == 'Weibull_2P':
                ranked_distributions_objects.append(
                    Weibull_Distribution(alpha=fitted_results.Weibull_2P_alpha,
                                         beta=fitted_results.Weibull_2P_beta))
                ranked_distributions_labels.append(
                    str('Weibull_2P (α=' +
                        str(round(fitted_results.Weibull_2P_alpha, sigfig)) +
                        ',β=' +
                        str(round(fitted_results.Weibull_2P_beta, sigfig)) +
                        ')'))
            elif dist_name == 'Gamma_2P':
                ranked_distributions_objects.append(
                    Gamma_Distribution(alpha=fitted_results.Gamma_2P_alpha,
                                       beta=fitted_results.Gamma_2P_beta))
                ranked_distributions_labels.append(
                    str('Gamma_2P (α=' +
                        str(round(fitted_results.Gamma_2P_alpha, sigfig)) +
                        ',β=' +
                        str(round(fitted_results.Gamma_2P_beta, sigfig)) +
                        ')'))
            elif dist_name == 'Normal_2P':
                ranked_distributions_objects.append(
                    Normal_Distribution(mu=fitted_results.Normal_2P_mu,
                                        sigma=fitted_results.Normal_2P_sigma))
                ranked_distributions_labels.append(
                    str('Normal_2P (μ=' +
                        str(round(fitted_results.Normal_2P_mu, sigfig)) +
                        ',σ=' +
                        str(round(fitted_results.Normal_2P_sigma, sigfig)) +
                        ')'))
            elif dist_name == 'Lognormal_2P':
                ranked_distributions_objects.append(
                    Lognormal_Distribution(
                        mu=fitted_results.Lognormal_2P_mu,
                        sigma=fitted_results.Lognormal_2P_sigma))
                ranked_distributions_labels.append(
                    str('Lognormal_2P (μ=' +
                        str(round(fitted_results.Lognormal_2P_mu, sigfig)) +
                        ',σ=' +
                        str(round(fitted_results.Lognormal_2P_sigma, sigfig)) +
                        ')'))
            elif dist_name == 'Exponential_1P':
                ranked_distributions_objects.append(
                    Exponential_Distribution(
                        Lambda=fitted_results.Expon_1P_lambda))
                ranked_distributions_labels.append(
                    str('Exponential_1P (lambda=' +
                        str(round(fitted_results.Expon_1P_lambda, sigfig)) +
                        ')'))
            elif dist_name == 'Beta_2P':
                ranked_distributions_objects.append(
                    Beta_Distribution(alpha=fitted_results.Beta_2P_alpha,
                                      beta=fitted_results.Beta_2P_beta))
                ranked_distributions_labels.append(
                    str('Beta_2P (α=' +
                        str(round(fitted_results.Beta_2P_alpha, sigfig)) +
                        ',β=' +
                        str(round(fitted_results.Beta_2P_beta, sigfig)) + ')'))

            if include_location_shifted is True:
                if dist_name == 'Weibull_3P':
                    ranked_distributions_objects.append(
                        Weibull_Distribution(
                            alpha=fitted_results.Weibull_3P_alpha,
                            beta=fitted_results.Weibull_3P_beta,
                            gamma=fitted_results.Weibull_3P_gamma))
                    ranked_distributions_labels.append(
                        str('Weibull_3P (α=' + str(
                            round(fitted_results.Weibull_3P_alpha, sigfig)) +
                            ',β=' +
                            str(round(fitted_results.Weibull_3P_beta,
                                      sigfig)) + ',γ=' +
                            str(round(fitted_results.Weibull_3P_gamma,
                                      sigfig)) + ')'))
                elif dist_name == 'Gamma_3P':
                    ranked_distributions_objects.append(
                        Gamma_Distribution(
                            alpha=fitted_results.Gamma_3P_alpha,
                            beta=fitted_results.Gamma_3P_beta,
                            gamma=fitted_results.Gamma_3P_gamma))
                    ranked_distributions_labels.append(
                        str('Gamma_3P (α=' +
                            str(round(fitted_results.Gamma_3P_alpha, sigfig)) +
                            ',β=' +
                            str(round(fitted_results.Gamma_3P_beta, sigfig)) +
                            ',γ=' +
                            str(round(fitted_results.Gamma_3P_gamma, sigfig)) +
                            ')'))
                elif dist_name == 'Lognormal_3P':
                    ranked_distributions_objects.append(
                        Lognormal_Distribution(
                            mu=fitted_results.Lognormal_3P_mu,
                            sigma=fitted_results.Lognormal_3P_sigma,
                            gamma=fitted_results.Lognormal_3P_gamma))
                    ranked_distributions_labels.append(
                        str('Lognormal_3P (μ=' + str(
                            round(fitted_results.Lognormal_3P_mu, sigfig)) +
                            ',σ=' + str(
                                round(fitted_results.Lognormal_3P_sigma,
                                      sigfig)) + ',γ=' +
                            str(
                                round(fitted_results.Lognormal_3P_gamma,
                                      sigfig)) + ')'))
                elif dist_name == 'Exponential_2P':
                    ranked_distributions_objects.append(
                        Exponential_Distribution(
                            Lambda=fitted_results.Expon_1P_lambda,
                            gamma=fitted_results.Expon_2P_gamma))
                    ranked_distributions_labels.append(
                        str('Exponential_1P (lambda=' + str(
                            round(fitted_results.Expon_1P_lambda, sigfig)) +
                            ',γ=' +
                            str(round(fitted_results.Expon_2P_gamma, sigfig)) +
                            ')'))

        number_of_distributions_fitted = len(ranked_distributions_objects)
        self.results = ranked_distributions_objects
        self.most_similar_distribution = ranked_distributions_objects[0]
        if print_results is True:
            print('The input distribution was:')
            print(distribution.param_title_long)
            if number_of_distributions_fitted < number_of_distributions_to_show:
                number_of_distributions_to_show = number_of_distributions_fitted
            print('\nThe top', number_of_distributions_to_show,
                  'most similar distributions are:')
            counter = 0
            while counter < number_of_distributions_to_show and counter < number_of_distributions_fitted:
                dist = ranked_distributions_objects[counter]
                print(dist.param_title_long)
                counter += 1

        if show_plot is True:
            plt.figure(figsize=(14, 6))
            plt.suptitle(
                str('Plot of similar distributions to ' +
                    distribution.param_title_long))
            counter = 0
            xlower = distribution.quantile(0.001)
            xupper = distribution.quantile(0.999)
            x_delta = xupper - xlower
            plt.subplot(121)
            distribution.PDF(label='Input distribution', linestyle='--')
            while counter < number_of_distributions_to_show and counter < number_of_distributions_fitted:
                ranked_distributions_objects[counter].PDF(
                    label=ranked_distributions_labels[counter])
                counter += 1
            plt.xlim([xlower - x_delta * 0.1, xupper + x_delta * 0.1])
            plt.legend()
            plt.title('PDF')
            counter = 0
            plt.subplot(122)
            distribution.CDF(label='Input distribution', linestyle='--')
            while counter < number_of_distributions_to_show and counter < number_of_distributions_fitted:
                ranked_distributions_objects[counter].CDF(
                    label=ranked_distributions_labels[counter])
                counter += 1
            plt.xlim([xlower - x_delta * 0.1, xupper + x_delta * 0.1])
            plt.legend()
            plt.title('CDF')
            plt.subplots_adjust(left=0.08, right=0.95)
            plt.show()
예제 #11
0
def test_Normal_Distribution():
    dist = Normal_Distribution(mu=5, sigma=2)
    assert dist.mean == 5
    assert dist.standard_deviation == 2
    assert dist.variance == 4
예제 #12
0
def test_Normal_Distribution():
    dist = Normal_Distribution(mu=5, sigma=2)
    assert_allclose(dist.mean, 5, rtol=rtol, atol=atol)
    assert_allclose(dist.standard_deviation, 2, rtol=rtol, atol=atol)
    assert_allclose(dist.variance, 4, rtol=rtol, atol=atol)
    assert_allclose(dist.skewness, 0, rtol=rtol, atol=atol)
    assert_allclose(dist.kurtosis, 3, rtol=rtol, atol=atol)
    assert dist.param_title_long == 'Normal Distribution (μ=5,σ=2)'
    assert_allclose(dist.quantile(0.2), 3.3167575328541714, rtol=rtol, atol=atol)
    assert_allclose(dist.inverse_SF(q=0.7), 3.9511989745839187, rtol=rtol, atol=atol)
    assert_allclose(dist.mean_residual_life(10), 0.6454895953278145, rtol=rtol, atol=atol)
    xvals = [0, dist.quantile(0.001), dist.quantile(0.01), dist.quantile(0.1), dist.quantile(0.9), dist.quantile(0.99), dist.quantile(0.999)]
    assert_allclose(dist.PDF(xvals=xvals, show_plot=False), [0.00876415024678427, 0.001683545038531998, 0.01332607110172904, 0.08774916596624342, 0.08774916596624342, 0.01332607110172904, 0.001683545038531998], rtol=rtol, atol=atol)
    assert_allclose(dist.CDF(xvals=xvals, show_plot=False), [0.006209665325776132, 0.001, 0.01, 0.1, 0.9, 0.99, 0.999], rtol=rtol, atol=atol)
    assert_allclose(dist.SF(xvals=xvals, show_plot=False), [0.9937903346742238, 0.999, 0.99, 0.9, 0.1, 0.01, 0.001], rtol=rtol, atol=atol)
    assert_allclose(dist.HF(xvals=xvals, show_plot=False), [0.00881891274345837, 0.0016852302688007987, 0.013460677880534384, 0.09749907329582604, 0.8774916596624335, 1.332607110172904, 1.6835450385319983], rtol=rtol, atol=atol)
    assert_allclose(dist.CHF(xvals=xvals, show_plot=False), [0.006229025485860027, 0.0010005003335835344, 0.01005033585350145, 0.1053605156578264, 2.302585092994045, 4.605170185988091, 6.907755278982137], rtol=rtol, atol=atol)