예제 #1
0
파일: plot_dem.py 프로젝트: cycle13/cosmic
def gen_task_ctrl():
    task_ctrl = TaskControl(__file__)
    task_ctrl.add(
        Task(
            plot_dem, [],
            [PATHS['figsdir'] / 'orog_precip' / f'dem_asia_with_regions.png']))
    return task_ctrl
예제 #2
0
def gen_task_ctrl():
    tc = TaskControl(__file__)
    datadir = PATHS['datadir'] / 'aphrodite_data/025deg'
    for year in ALL_YEARS:
        output_path = datadir / FILE_TPL.format(year=year)
        tc.add(
            Task(download_year, [], [output_path],
                 func_args=(year, datadir),
                 atomic_write=False))
    return tc
예제 #3
0
def gen_task_ctrl():
    tc = TaskControl(__file__)
    datadir = PATHS['datadir'] / 'aphrodite_data/025deg'
    filenames = [datadir / FILE_TPL.format(year=year) for year in ALL_YEARS]
    tc.add(
        Task(combine_years, filenames, [
            datadir / 'aphrodite_combined_all.nc',
            datadir / 'aphrodite_combined_jja.nc'
        ]))

    return tc
예제 #4
0
def gen_task_ctrl():
    tc = TaskControl(__file__)
    # pp_files = list((PATHS['datadir'] / 'u-al508' / 'ap8.pp' / 'lowlevel_wind_200901').glob('al508a.p8200901??.pp'))
    # for pp_file in pp_files:
    #     tc.add(Task(convert_wrapper, [pp_file], [pp_file.with_suffix('.nc')]))

    pp_files = list(
        (PATHS['datadir'] / 'u-al508' /
         'ap9.pp').glob('surface_wind_2006??/al508a.p9????????.pp'))
    pp_files += list(
        (PATHS['datadir'] / 'u-ak543' /
         'ap9.pp').glob('surface_wind_2006??/ak543a.p9????????.pp'))
    for pp_file in pp_files:
        tc.add(Task(convert_wrapper, [pp_file], [pp_file.with_suffix('.nc')]))
    return tc
예제 #5
0
def gen_task_ctrl():
    task_ctrl = TaskControl(__file__)
    hb_names = [f'S{i}' for i in range(11)]

    output_datadir = PATHS['output_datadir']

    inputs = {f'basin_vector_{hb_name}': output_datadir / 'basin_weighted_analysis' / hb_name / f'hb_{hb_name}.shp'
              for hb_name in hb_names}

    task_ctrl.add(Task(gen_vector_basin_stats,
                       inputs,
                       [PATHS['figsdir'] / 'basin_stats' / 'basin_vector_stats.csv'],
                       func_args=(hb_names,),
                       ))

    resolutions = ['N1280', 'N512', 'N216', 'N96']
    inputs = {f'basin_weights_{res}_{hb_name}': (output_datadir /
                                                 'basin_weighted_analysis' / hb_name / f'weights_{res}_{hb_name}.nc')
              for res in resolutions
              for hb_name in hb_names}

    task_ctrl.add(Task(gen_weights_basin_stats,
                       inputs,
                       [PATHS['figsdir'] / 'basin_stats' / 'basin_weights_stats.csv'],
                       func_args=(resolutions, hb_names),
                       ))

    return task_ctrl
예제 #6
0
def gen_task_ctrl():
    years = [2019]
    months = range(1, 13)

    task_ctrl = TaskControl(__file__)
    for year, month in itertools.product(years, months):
        filename = (BASEDIR / 'raw' /
                    f'precip_{year}{month:02}' /
                    f'CMORPH_V1.0_ADJ_8km-30min_{year}{month:02}.tar')
        task_ctrl.add(Task(download_year, [], [filename], func_args=(year, month)))

        raw_filename = (BASEDIR / 'raw' /
                        f'precip_{year}{month:02}' /
                        f'CMORPH_V1.0_ADJ_8km-30min_{year}{month:02}.tar')
        nc_filenames = {day: (BASEDIR /
                              f'precip_{year}{month:02}' /
                              f'cmorph_ppt_{year}{month:02}{day:02}.nc')
                        for day in range(1, calendar.monthrange(year, month)[1] + 1)}
        task_ctrl.add(Task(convert_year_month,
                           [raw_filename],
                           nc_filenames,
                           func_args=(year, month)))

        nc_asia_filename = (BASEDIR / f'precip_{year}{month:02}' /
                            f'cmorph_ppt_{year}{month:02}.asia.nc')
        task_ctrl.add(Task(extract_year_month,
                           nc_filenames,
                           [nc_asia_filename],
                           func_args=(year, month)))

        regrid_inputs = {}
        regrid_inputs['target'] = Path(f'/gws/nopw/j04/cosmic/mmuetz/data/u-al508/ap9.pp/precip_200501/al508a.p9200501.asia_precip.nc')
        regrid_inputs['cmorph'] = BASEDIR / f'precip_{year}{month:02}/cmorph_ppt_{year}{month:02}.asia.nc'
        regrid_output = regrid_inputs['cmorph'].parent / (regrid_inputs['cmorph'].stem + '.N1280.nc')
        task_ctrl.add(Task(regrid_asia,
                           regrid_inputs,
                           [regrid_output]))

    return task_ctrl
def gen_task_ctrl():
    tc = TaskControl(__file__)
    models = ['al508', 'ak543']
    # models = ['ak543']
    dist_threshs = [100]
    dotprod_threshs = [0.05]
    months = [6, 7, 8]
    # dist_threshs = [20, 100]
    # dotprod_threshs = [0.05, 0.1]
    year = 2006

    for model, dotprod_thresh, dist_thresh in product(models, dotprod_threshs, dist_threshs):
        # 1 model at a time.
        orog_precip_paths = [fmtp(orog_precip_path_tpl, model=model, year=year, month=month,
                                  dotprod_thresh=dotprod_thresh, dist_thresh=dist_thresh)
                             for month in months]

        orog_precip_mean_fields = [fmtp(orog_precip_mean_fields_tpl, model=model, year=year, season='jja',
                                        dotprod_thresh=dotprod_thresh, dist_thresh=dist_thresh)]
        tc.add(Task(extract_precip_mean_fields, orog_precip_paths, orog_precip_mean_fields))

    for model, dotprod_thresh, dist_thresh in product(models, dotprod_threshs, dist_threshs):
        orog_precip_mean_fields = [fmtp(orog_precip_mean_fields_tpl, model=model, year=year, season='jja',
                                        dotprod_thresh=dotprod_thresh, dist_thresh=dist_thresh)]
        orog_precip_figs = [fmtp(orog_precip_fig_tpl, model=model, year=year, season='jja',
                                 dotprod_thresh=dotprod_thresh, dist_thresh=dist_thresh,
                                 precip_type=precip_type)
                            for precip_type in ['orog', 'non_orog', 'ocean', 'orog_frac']]
        tc.add(Task(plot_mean_orog_precip, orog_precip_mean_fields, orog_precip_figs))

    return tc
    for dotprod_thresh, dist_thresh in product(dotprod_threshs, dist_threshs):
        # Compare 2 models.
        orog_precip_paths = {(model, month): fmtp(orog_precip_path_tpl, model=model, year=year, month=month,
                                                  dotprod_thresh=dotprod_thresh, dist_thresh=dist_thresh)
                             for model in models
                             for month in months}
        orog_precip_figs = [fmtp(orog_precip_fig_tpl, model='-'.join(models), year=year, season='jja',
                                 dotprod_thresh=dotprod_thresh, dist_thresh=dist_thresh,
                                 precip_type=precip_type)
                            for precip_type in ['orog', 'non_orog', 'ocean']]
        tc.add(Task(plot_compare_mean_orog_precip, orog_precip_paths, orog_precip_figs,
                    func_args=(models, months)))

    return tc
def gen_task_ctrl():
    task_ctrl = TaskControl(__file__)
    aphrodite_dir = Path('aphrodite_data/025deg')
    inputs = {
        ' daily precipitation analysis interpolated onto 0.25deg grids': (PATHS['datadir'] /
                                                                          aphrodite_dir /
                                                                          'APHRO_MA_025deg_V1901.2009.nc')}
    outputs = {
        'asia': PATHS['figsdir'] / 'aphrodite' / 'asia_aphrodite_2009_jja.png',
        'china': PATHS['figsdir'] / 'aphrodite' / 'china_aphrodite_2009_jja.png',
    }

    task_ctrl.add(Task(plot_aphrodite_seasonal_analysis, inputs, outputs, func_args=(True, )))

    outputs = {
        'asia': PATHS['figsdir'] / 'aphrodite' / 'asia_aphrodite_2009_jja.lognorm.png',
        'china': PATHS['figsdir'] / 'aphrodite' / 'china_aphrodite_2009_jja.lognorm.png',
    }

    task_ctrl.add(Task(plot_aphrodite_seasonal_analysis, inputs, outputs, func_args=(False, )))
    return task_ctrl
예제 #9
0
def gen_task_ctrl():
    task_ctrl = TaskControl(__file__)

    # Can only do 1 or 3 runids ATM.
    all_runids = [['cmorph', 'u-al508', 'u-ak543'], ['cmorph'],
                  ['cmorph', 'u-am754', 'u-ak543'],
                  ['u-al508', 'u-am754', 'u-ak543'],
                  ['cmorph', 'u-al508', 'u-am754', 'u-ak543'],
                  ['u-al508', 'u-aj399', 'u-az035']]

    season = 'jja'
    durations = ['long']
    for start_year in range(1998, 2016):
        durations.append(f'{start_year}06-{start_year + 3}08')
    precip_threshes = [0.1]
    methods = ['peak', 'harmonic']
    # regions = ['china', 'asia', 'europe']
    regions = ['china', 'asia']

    # Run all durations for first runid.
    task_data = list(
        itertools.product([all_runids[0]], durations, precip_threshes,
                          regions))
    # Run first duration for all other runids.
    task_data.extend(
        itertools.product(all_runids[1:], [durations[0]], precip_threshes,
                          regions))

    for runids, duration, precip_thresh, region in task_data:
        task = AfiTask(fig_afi_mean, runids, PATHS['datadir'],
                       PATHS['figsdir'], duration, precip_thresh, season,
                       region)
        task_ctrl.add(task)
        for method in methods:
            task = AfiTask(fig_afi_diurnal_cycle, runids, PATHS['datadir'],
                           PATHS['figsdir'], duration, precip_thresh, season,
                           region, method)
            task_ctrl.add(task)

    return task_ctrl
예제 #10
0
def gen_task_ctrl():
    task_ctrl = TaskControl(__file__)

    for basin_scales in ['small_medium_large', 'sliding']:
        hb_raster_cubes_fn = PATHS[
            'output_datadir'] / f'basin_weighted_analysis/hb_N1280_raster_{basin_scales}.nc'
        if basin_scales == 'small_medium_large':
            hb_names = HB_NAMES
        else:
            hb_names = [f'S{i}' for i in range(11)]
        shp_path_tpl = 'basin_weighted_analysis/{hb_name}/hb_{hb_name}.{ext}'
        for hb_name in hb_names:
            shp_inputs = {
                ext: PATHS['output_datadir'] /
                shp_path_tpl.format(hb_name=hb_name, ext=ext)
                for ext in ['shp', 'dbf', 'prj', 'cpg', 'shx']
            }
            task_ctrl.add(
                Task(
                    plot_hydrobasins_files,
                    shp_inputs,
                    [
                        PATHS['figsdir'] / 'basin_weighted_analysis' / 'map' /
                        'hydrobasins_size' / f'map_{hb_name}.png'
                    ],
                    func_args=[hb_name],
                ))

        weighted_mean_precip_tpl = 'basin_weighted_analysis/{hb_name}/' \
                                   '{dataset}.{hb_name}.area_weighted.mean_precip.hdf'

        weighted_mean_precip_filenames = defaultdict(list)
        for dataset, hb_name in itertools.product(DATASETS + ['aphrodite'],
                                                  hb_names):
            fmt_kwargs = {'dataset': dataset, 'hb_name': hb_name}
            max_min_path = PATHS[
                'output_datadir'] / f'basin_weighted_analysis/{hb_name}/mean_precip_max_min.pkl'

            weighted_mean_precip_filename = PATHS[
                'output_datadir'] / weighted_mean_precip_tpl.format(
                    **fmt_kwargs)
            weighted_mean_precip_filenames[hb_name].append(
                weighted_mean_precip_filename)
            task_ctrl.add(
                Task(plot_mean_precip, {
                    'weighted': weighted_mean_precip_filename,
                    'raster_cubes': hb_raster_cubes_fn,
                    'mean_precip_max_min': max_min_path
                }, [
                    PATHS['figsdir'] / 'basin_weighted_analysis' / 'map' /
                    'mean_precip' /
                    f'map_{dataset}.{hb_name}.area_weighted.png'
                ],
                     func_args=[dataset, hb_name]))

            if dataset != 'cmorph':
                fmt_kwargs = {'dataset': 'cmorph', 'hb_name': hb_name}
                cmorph_weighted_mean_precip_filename = (
                    PATHS['output_datadir'] /
                    weighted_mean_precip_tpl.format(**fmt_kwargs))
                task_ctrl.add(
                    Task(plot_obs_mean_precip_diff, {
                        'dataset_weighted': weighted_mean_precip_filename,
                        'obs_weighted': cmorph_weighted_mean_precip_filename,
                        'raster_cubes': hb_raster_cubes_fn,
                        'mean_precip_max_min': max_min_path
                    }, [
                        PATHS['figsdir'] / 'basin_weighted_analysis' / 'map' /
                        'cmorph_mean_precip_diff' /
                        f'map_{dataset}.{hb_name}.area_weighted.png'
                    ],
                         func_args=[dataset, hb_name]))

            if dataset not in ['cmorph', 'aphrodite']:
                fmt_kwargs = {'dataset': 'aphrodite', 'hb_name': hb_name}
                obs_weighted_mean_precip_filename = (
                    PATHS['output_datadir'] /
                    weighted_mean_precip_tpl.format(**fmt_kwargs))
                task_ctrl.add(
                    Task(plot_obs_mean_precip_diff, {
                        'dataset_weighted': weighted_mean_precip_filename,
                        'obs_weighted': obs_weighted_mean_precip_filename,
                        'raster_cubes': hb_raster_cubes_fn,
                        'mean_precip_max_min': max_min_path
                    }, [
                        PATHS['figsdir'] / 'basin_weighted_analysis' / 'map' /
                        'cmorph_mean_precip_diff' /
                        f'map_aphrodite_vs_{dataset}.{hb_name}.area_weighted.png'
                    ],
                         func_args=[dataset, hb_name]))

        for obs in ['cmorph', 'aphrodite', 'u-al508', 'u-ak543']:
            mean_precip_rmse_data_filename = (
                PATHS['output_datadir'] /
                f'basin_weighted_analysis/{obs}.mean_precip_all_rmses.{basin_scales}.pkl'
            )
            task_ctrl.add(
                Task(plot_obs_vs_all_datasets_mean_precip,
                     inputs=[mean_precip_rmse_data_filename],
                     outputs=[
                         PATHS['figsdir'] / 'basin_weighted_analysis' /
                         'cmorph_vs' / 'mean_precip' /
                         f'{obs}_vs_all_datasets.all_{f}.{basin_scales}.pdf'
                         for f in ['rmse', 'corr']
                     ]))

        if basin_scales == 'small_medium_large':
            input_paths = {'raster_cubes': hb_raster_cubes_fn}
            for name, datasets in zip(
                ['', 'full_'],
                (['cmorph', 'u-al508', 'u-ak543'
                  ], ['cmorph', 'u-al508', 'u-am754', 'u-ak543'])):
                paths = {
                    f'weighted_{hb_name}_{dataset}':
                    (PATHS['output_datadir'] / weighted_mean_precip_tpl.format(
                        hb_name=hb_name, dataset=dataset))
                    for hb_name, dataset in itertools.product(
                        hb_names, datasets)
                }
                input_paths.update(paths)
                task_ctrl.add(
                    Task(plot_mean_precip_asia_combined,
                         input_paths, [
                             PATHS['figsdir'] / 'basin_weighted_analysis' /
                             'map' / 'mean_precip_asia_combined' /
                             f'{name}asia_combined_basin_scales.pdf'
                         ],
                         func_args=[datasets, hb_names]))

        weighted_phase_mag_tpl = 'basin_weighted_analysis/{hb_name}/' \
                                 '{dataset}.{hb_name}.{mode}.area_weighted.phase_mag.hdf'

        for dataset, hb_name, mode in itertools.product(
                DATASETS, hb_names, PRECIP_MODES):
            fmt_kwargs = {'dataset': dataset, 'hb_name': hb_name, 'mode': mode}
            weighted_phase_mag_filename = PATHS[
                'output_datadir'] / weighted_phase_mag_tpl.format(**fmt_kwargs)

            task_ctrl.add(
                Task(plot_phase_mag, {
                    'weighted': weighted_phase_mag_filename,
                    'raster_cubes': hb_raster_cubes_fn
                }, [
                    PATHS['figsdir'] / 'basin_weighted_analysis' / 'map' /
                    mode /
                    f'map_{dataset}.{hb_name}.{mode}.area_weighted.{v}.png'
                    for v in ['phase', 'alpha_phase', 'mag']
                ],
                     func_args=[dataset, hb_name, mode]))

        if basin_scales == 'small_medium_large':
            for name, datasets in zip(
                ['', 'full_'],
                (['cmorph', 'u-al508', 'u-ak543'
                  ], ['cmorph', 'u-al508', 'u-am754', 'u-ak543'])):
                for mode in PRECIP_MODES:
                    input_paths = {
                        f'weighted_{hb_name}_{dataset}':
                        (PATHS['output_datadir'] /
                         weighted_phase_mag_tpl.format(
                             hb_name=hb_name, dataset=dataset, mode=mode))
                        for hb_name, dataset in itertools.product(
                            hb_names, datasets)
                    }
                    input_paths.update({'raster_cubes': hb_raster_cubes_fn})
                    task_ctrl.add(
                        Task(plot_phase_alpha_combined,
                             input_paths, [
                                 PATHS['figsdir'] / 'basin_weighted_analysis' /
                                 'map' / 'phase_alpha_combined' /
                                 f'{name}{mode}_phase_alpha_combined_asia.pdf'
                             ],
                             func_args=(datasets, hb_names, mode)))

        for area_weighted in [True, False]:
            weighted = 'area_weighted' if area_weighted else 'not_area_weighted'

            vrmse_data_filename = (
                PATHS['output_datadir'] /
                f'basin_weighted_analysis/all_rmses.{weighted}.{basin_scales}.pkl'
            )

            task_ctrl.add(
                Task(
                    plot_cmorph_vs_all_datasets_phase_mag,
                    [vrmse_data_filename],
                    [
                        PATHS['figsdir'] / 'basin_weighted_analysis' /
                        'cmorph_vs' / 'phase_mag' /
                        f'cmorph_vs_all_datasets.all_rmse.{weighted}.{basin_scales}.pdf'
                    ],
                ))

    return task_ctrl
예제 #11
0
def gen_task_ctrl():
    tc = TaskControl(__file__)

    years = [2006]
    # years = [2005, 2006, 2007, 2008]
    models = ['al508', 'ak543']
    dist_threshs = [50, 100]
    dotprod_threshs = [0.05]
    months = [6, 7, 8]
    # dist_threshs = [20, 100]
    # dotprod_threshs = [0.05, 0.1]

    for dist_thresh in dist_threshs:
        cache_key = fmtp(cache_key_tpl, dist_thresh=dist_thresh)
        tc.add(
            Task(gen_dist_cache, {'orog': orog_path}, [cache_key],
                 func_args=(dist_thresh, )))

    for year, model, dotprod_thresh, dist_thresh in product(
            years, models, dotprod_threshs, dist_threshs):
        cache_key = fmtp(cache_key_tpl, dist_thresh=dist_thresh)
        for month in months:
            surf_wind_path = fmtp(surf_wind_path_tpl,
                                  model=model,
                                  year=year,
                                  month=month)
            orog_mask_path = fmtp(orog_mask_path_tpl,
                                  model=model,
                                  year=year,
                                  month=month,
                                  dotprod_thresh=dotprod_thresh,
                                  dist_thresh=dist_thresh)
            inputs = {
                'orog': orog_path,
                'cache_key': cache_key,
                'surf_wind': surf_wind_path
            }

            tc.add(
                Task(gen_orog_mask,
                     inputs, [orog_mask_path],
                     func_args=(dotprod_thresh, dist_thresh)))

            precip_path = fmtp(precip_path_tpl,
                               model=model,
                               year=year,
                               month=month)
            orog_precip_path = fmtp(orog_precip_path_tpl,
                                    model=model,
                                    year=year,
                                    month=month,
                                    dotprod_thresh=dotprod_thresh,
                                    dist_thresh=dist_thresh)
            orog_precip_inputs = {
                'orog_mask': orog_mask_path,
                'land_sea_mask': land_sea_mask,
                'precip': precip_path
            }
            tc.add(
                Task(calc_orog_precip, orog_precip_inputs, [orog_precip_path]))

            orog_precip_frac_inputs = {
                'orog_mask': orog_mask_path,
                'land_sea_mask': land_sea_mask,
                'orog_precip': orog_precip_path
            }
            orog_precip_frac_path = fmtp(orog_precip_frac_path_tpl,
                                         model=model,
                                         year=year,
                                         month=month,
                                         dotprod_thresh=dotprod_thresh,
                                         dist_thresh=dist_thresh)

            tc.add(
                Task(calc_orog_precip_fracs, orog_precip_frac_inputs,
                     [orog_precip_frac_path]))

    variables = list(product(models, dotprod_threshs, dist_threshs, months))
    columns = ['model', 'dotprod_thresh', 'dist_thresh', 'month']
    combine_inputs = [
        fmtp(orog_precip_frac_path_tpl,
             model=model,
             year=year,
             month=month,
             dotprod_thresh=dotprod_thresh,
             dist_thresh=dist_thresh)
        for model, dotprod_thresh, dist_thresh, month in variables
    ]
    combine_fracs_output = [combine_frac_path]
    tc.add(
        Task(combine_orog_precip_fracs,
             combine_inputs,
             combine_fracs_output,
             func_args=(variables, columns)))

    return tc
예제 #12
0
def gen_task_ctrl():
    task_ctrl = TaskControl(__file__)
    precip_thresh = 0.1
    season = 'jja'
    runids = UmN1280SpaTask.RUNIDS
    # runids = ['aj399']
    # regions = ['asia', 'europe']
    regions = ['asia']

    for region in regions:
        start_year_month = (1998, 1)
        end_year_month = (2018, 12)
        task_ctrl.add(CmorphSpaTask(start_year_month, end_year_month, precip_thresh, season, region))

        for start_year in range(1998, 2016):
            start_year_month = (start_year, 6)
            end_year_month = (start_year + 3, 8)
            task_ctrl.add(CmorphSpaTask(start_year_month, end_year_month, precip_thresh, season, region))

        start_year_month = (2005, 6)
        end_year_month = (2008, 8)
        for runid in runids:
            task_ctrl.add(UmN1280SpaTask(start_year_month, end_year_month, precip_thresh, season, region, runid))

        # Disabled for now.
        # for model in UmHadgemSpaTask.MODELS:
        #     task_ctrl.add(UmHadgemSpaTask(start_year_month, end_year_month, precip_thresh, season, region, model))

    return task_ctrl

    # Individual analysis for each JJA season.
    for year in range(1998, 2019):
        start_year_month = (year, 6)
        end_year_month = (year, 8)
        task_ctrl.add(CmorphSpaTask(start_year_month, end_year_month, precip_thresh, season))

    for year in range(2005, 2009):
        start_year_month = (year, 6)
        end_year_month = (year, 8)
        for runid in runids:
            task_ctrl.add(UmN1280SpaTask(start_year_month, end_year_month, precip_thresh, season, runid))

        for model in UmHadgemSpaTask.MODELS:
            task_ctrl.add(UmHadgemSpaTask(start_year_month, end_year_month, precip_thresh, season, model))

    return task_ctrl
예제 #13
0
def gen_task_ctrl():
    task_ctrl = TaskControl(__file__)

    for basin_scales in ['small_medium_large', 'sliding']:
        hb_raster_cubes_fn = PATHS[
            'output_datadir'] / f'basin_weighted_analysis/hb_N1280_raster_{basin_scales}.nc'
        cmorph_path = get_dataset_path('cmorph')
        # cmorph_path = (PATHS['datadir'] /
        #                'cmorph_data/8km-30min/cmorph_ppt_jja.199801-201812.asia_precip.ppt_thresh_0p1.N1280.nc')
        task_ctrl.add(
            Task(gen_hydrobasins_raster_cubes, [cmorph_path],
                 [hb_raster_cubes_fn],
                 func_args=[
                     SLIDING_SCALES if basin_scales == 'sliding' else SCALES
                 ]))

        if basin_scales == 'small_medium_large':
            hb_names = HB_NAMES
        else:
            hb_names = [f'S{i}' for i in range(11)]
        shp_path_tpl = 'basin_weighted_analysis/{hb_name}/hb_{hb_name}.{ext}'
        for hb_name in hb_names:
            # Creates a few different files with different extensions - need to have them all in outputs
            # so that they are moved to the right place after run by Task.atomic_write.
            task_ctrl.add(
                Task(
                    gen_hydrobasins_files,
                    [],
                    {
                        ext: PATHS['output_datadir'] /
                        shp_path_tpl.format(hb_name=hb_name, ext=ext)
                        for ext in ['shp', 'dbf', 'prj', 'cpg', 'shx']
                    },
                    func_args=[hb_name],
                ))

        # N.B. Need to do this once for one dataset at each resolution.
        # I.e. only need one N1280 res dataset -- u-ak543.
        for dataset, hb_name in itertools.product(DATASETS[:4] + ['aphrodite'],
                                                  hb_names):
            if dataset == 'u-ak543':
                dataset_cube_path = PATHS[
                    'datadir'] / 'u-ak543/ap9.pp/precip_200601/ak543a.p9200601.asia_precip.nc'
            elif dataset[:7] == 'HadGEM3':
                dataset_cube_path = HADGEM_FILENAMES[dataset]
            elif dataset == 'aphrodite':
                dataset_cube_path = PATHS[
                    'datadir'] / 'aphrodite_data/025deg/aphrodite_combined_all.nc'
            input_filenames = {
                dataset:
                dataset_cube_path,
                hb_name:
                PATHS['output_datadir'] /
                shp_path_tpl.format(hb_name=hb_name, ext='shp')
            }

            resolution = DATASET_RESOLUTION[dataset]
            weights_filename = (
                PATHS['output_datadir'] /
                f'basin_weighted_analysis/{hb_name}/weights_{resolution}_{hb_name}.nc'
            )
            task_ctrl.add(
                Task(gen_weights_cube, input_filenames, [weights_filename]))

        weighted_mean_precip_tpl = 'basin_weighted_analysis/{hb_name}/' \
                                   '{dataset}.{hb_name}.area_weighted.mean_precip.hdf'

        weighted_mean_precip_filenames = defaultdict(list)
        for dataset, hb_name in itertools.product(DATASETS + ['aphrodite'],
                                                  hb_names):
            fmt_kwargs = {'dataset': dataset, 'hb_name': hb_name}
            dataset_path = get_dataset_path(dataset)
            resolution = DATASET_RESOLUTION[dataset]
            weights_filename = (
                PATHS['output_datadir'] /
                f'basin_weighted_analysis/{hb_name}/weights_{resolution}_{hb_name}.nc'
            )
            weighted_mean_precip_filename = PATHS[
                'output_datadir'] / weighted_mean_precip_tpl.format(
                    **fmt_kwargs)
            weighted_mean_precip_filenames[hb_name].append(
                weighted_mean_precip_filename)

            task_ctrl.add(
                Task(native_weighted_basin_mean_precip_analysis, {
                    'dataset_path': dataset_path,
                    'weights': weights_filename
                }, [weighted_mean_precip_filename]))

        for obs in ['cmorph', 'aphrodite', 'u-al508', 'u-ak543']:
            mean_precip_rmse_data_filename = (
                PATHS['output_datadir'] /
                f'basin_weighted_analysis/{obs}.mean_precip_all_rmses.{basin_scales}.pkl'
            )
            gen_mean_precip_rmses_inputs = {
                (ds, hb_name): PATHS['output_datadir'] /
                weighted_mean_precip_tpl.format(dataset=ds, hb_name=hb_name)
                for ds, hb_name in itertools.product(DATASETS +
                                                     ['aphrodite'], hb_names)
            }
            task_ctrl.add(
                Task(gen_mean_precip_rmses_corrs,
                     inputs=gen_mean_precip_rmses_inputs,
                     outputs=[mean_precip_rmse_data_filename],
                     func_kwargs={
                         'hb_names': hb_names,
                         'obs': obs
                     }))

            mean_precip_bias_data_filename = (
                PATHS['output_datadir'] /
                f'basin_weighted_analysis/{obs}.mean_precip_all_bias.{basin_scales}.csv'
            )
            task_ctrl.add(
                Task(gen_mean_precip_highest_percentage_bias,
                     inputs=gen_mean_precip_rmses_inputs,
                     outputs=[mean_precip_bias_data_filename],
                     func_kwargs={
                         'hb_names': hb_names,
                         'obs': obs
                     }))

        for hb_name in hb_names:
            # N.B. out of order.
            max_min_path = PATHS[
                'output_datadir'] / f'basin_weighted_analysis/{hb_name}/mean_precip_max_min.pkl'
            task_ctrl.add(
                Task(calc_mean_precip_max_min,
                     weighted_mean_precip_filenames[hb_name], [max_min_path]))

        weighted_phase_mag_tpl = 'basin_weighted_analysis/{hb_name}/' \
                                 '{dataset}.{hb_name}.{mode}.area_weighted.phase_mag.hdf'

        for dataset, hb_name, mode in itertools.product(
                DATASETS, hb_names, PRECIP_MODES):
            fmt_kwargs = {'dataset': dataset, 'hb_name': hb_name, 'mode': mode}
            if dataset[:7] == 'HadGEM3':
                cube_name = f'{mode}_of_precip_JJA'
            else:
                cube_name = f'{mode}_of_precip_jja'
            dataset_path = get_dataset_path(dataset)
            resolution = DATASET_RESOLUTION[dataset]
            weights_filename = PATHS[
                'output_datadir'] / f'basin_weighted_analysis/{hb_name}/weights_{resolution}_{hb_name}.nc'

            weighted_phase_mag_filename = PATHS[
                'output_datadir'] / weighted_phase_mag_tpl.format(**fmt_kwargs)
            task_ctrl.add(
                Task(native_weighted_basin_diurnal_cycle_analysis, {
                    'diurnal_cycle': dataset_path,
                    'weights': weights_filename
                }, [weighted_phase_mag_filename],
                     func_args=[cube_name]))

        for area_weighted in [True, False]:
            weighted = 'area_weighted' if area_weighted else 'not_area_weighted'

            vrmse_data_filename = (
                PATHS['output_datadir'] /
                f'basin_weighted_analysis/all_rmses.{weighted}.{basin_scales}.pkl'
            )
            gen_rmses_inputs = {
                (ds, mode, hb_name):
                PATHS['output_datadir'] / weighted_phase_mag_tpl.format(
                    dataset=ds, hb_name=hb_name, mode=mode)
                for ds, mode, hb_name in itertools.product(
                    DATASETS, PRECIP_MODES, hb_names)
            }
            gen_rmses_inputs['raster_cubes'] = hb_raster_cubes_fn

            task_ctrl.add(
                Task(gen_phase_mag_rmses,
                     inputs=gen_rmses_inputs,
                     outputs=[vrmse_data_filename],
                     func_kwargs={
                         'area_weighted': area_weighted,
                         'hb_names': hb_names
                     }))

    return task_ctrl