예제 #1
0
    def on_epoch_end(self, epoch, logs=None):
        """ Store the model loss and accuracy at the end of every epoch, and store a model prediction on data """
        self.epoch_log.write(
            json.dumps({
                'epoch': epoch,
                'loss': logs['loss']
            }) + '\n')

        if (epoch + 1) % self.period == 0 or epoch == 0:
            # Predict on all of the given silhouettes
            for data_type, data in self.pred_data.items():
                if data is not None:
                    if not isinstance(data, list) or type(data) == np.array:
                        data = np.array(data)
                        data = data.reshape(
                            (1, data.shape[0], data.shape[1], data.shape[2]))

                    #for i, silhouette in enumerate(data):
                    #    # Save silhouettes
                    #    silhouette *= 255
                    #    cv2.imwrite(os.path.join(self.pred_path, "{}_epoch.{:03d}.gt_silh_{:03d}.png".format(data_type, epoch + 1, i)), silhouette.astype("uint8"))

                    preds = self.model.predict(data)
                    #print("Predictions: " + str(preds))

                    for i, pred in enumerate(preds[1], 1):
                        #self.smpl.set_params(pred[:72].reshape((24, 3)), pred[72:82], pred[82:])
                        #self.smpl.save_to_obj(os.path.join(self.pred_path, "{}_pred_{:03d}.obj".format(data_type, i)))
                        #print_mesh(os.path.join(self.pred_path, "epoch.{:03d}.{}_gt_{:03d}.obj".format(epoch, data_type, i)), gt[i-1], smpl.faces)
                        print_mesh(
                            os.path.join(
                                self.pred_path,
                                "{}_epoch.{:03d}.pred_{:03d}.obj".format(
                                    data_type, epoch + 1, i)), pred,
                            self.smpl.faces)

                        # Store predicted silhouette and the difference between it and the GT silhouette
                        gt_silhouette = (data[i - 1] *
                                         255).astype("uint8").reshape(
                                             data.shape[1], data.shape[2])
                        #cv2.imwrite(os.path.join(self.pred_path, "{}_epoch.{:03d}.gt_silh_{:03d}.png".format(data_type, epoch + 1, i)), gt_silhouette)

                        pred_silhouette = Mesh(
                            pointcloud=pred).render_silhouette(show=False)
                        #cv2.imwrite(os.path.join(self.pred_path, "{}_epoch.{:03d}.pred_silh_{:03d}.png".format(data_type, epoch + 1, i)), pred_silhouette)

                        diff_silh = abs(gt_silhouette - pred_silhouette)
                        #print(diff_silh.shape)
                        #cv2.imshow("Diff silh", diff_silh)
                        #cv2.imwrite(os.path.join(self.pred_path, "{}_epoch.{:03d}.diff_silh_{:03d}.png".format(data_type, epoch + 1, i)), diff_silh.astype("uint8"))
                        silh_comp = np.concatenate(
                            [gt_silhouette, pred_silhouette, diff_silh])
                        cv2.imwrite(
                            os.path.join(
                                self.pred_path,
                                "{}_epoch.{:03d}.silh_comp_{:03d}.png".format(
                                    data_type, epoch + 1, i)),
                            silh_comp.astype("uint8"))

                        if self.gt_pc[data_type] is not None:
                            print_mesh(
                                os.path.join(
                                    self.pred_path,
                                    "{}_epoch.{:03d}.gt_pc_{:03d}.obj".format(
                                        data_type, epoch + 1, i)),
                                self.gt_pc[data_type], self.smpl.faces)
                            print_point_clouds(
                                os.path.join(
                                    self.pred_path,
                                    "{}_epoch.{:03d}.comparison_{:03d}.obj".
                                    format(data_type, epoch + 1, i)),
                                [pred, self.gt_pc[data_type]], [(255, 0, 0),
                                                                (0, 255, 0)])

                    if self.visualise:
                        # Show a random sample
                        rand_index = np.random.randint(low=0,
                                                       high=len(data)) + 1
                        mesh = Mesh(filepath=os.path.join(
                            self.pred_path, "{}_epoch.{:03d}.pred_{:03d}.obj".
                            format(data_type, epoch + 1, rand_index)))

                        # Show the true silhouette
                        true_silh = data[rand_index - 1]
                        true_silh = true_silh.reshape(true_silh.shape[:-1])
                        plt.imshow(true_silh, cmap='gray')
                        plt.title("True {} silhouette {:03d}".format(
                            data_type, rand_index))
                        plt.show()

                        # Show the predicted silhouette and mesh
                        mesh.render_silhouette(
                            title="Predicted {} silhouette {:03d}".format(
                                data_type, rand_index))
                        diff_silh = cv2.imread(
                            "{}_epoch.{:03d}.diff_silh_{:03d}.png".format(
                                data_type, epoch + 1, rand_index))
                        cv2.imshow(
                            "Predicted {} silhouette {:03d}".format(
                                data_type, rand_index), diff_silh)

                        try:
                            mesh.render3D()
                        except Exception:
                            pass
    np.zeros((data_samples, 85)),
    np.zeros((data_samples, 7))
]

x_test = X_data
y_test = Y_data

# Render silhouettes for the callback data
num_samples = 5
cb_indices = X_indices[:num_samples]
cb_params = X_params[:num_samples]
cb_pcs = X_pcs[:num_samples]
X_cb = [np.array(cb_indices), np.array(cb_params), np.array(cb_pcs)]
silh_cb = []
for pc in cb_pcs:
    silh = Mesh(pointcloud=pc).render_silhouette(show=False)
    silh_cb.append(silh)


# Initialise the embedding layer
def emb_init_weights_np(emb_params, distractor=np.pi):
    def emb_init_wrapper(param, offset=False):
        def emb_init(shape, dtype="float32"):
            """ Initializer for the embedding layer """
            emb_params_ = emb_params[:, param]

            if offset:
                k = distractor
                #k = 1.0
                offset_ = k * 2 * (np.random.rand(shape[0]) - 0.5)
                emb_params_[:] += offset_
예제 #3
0
    dilate = 1
    if dilate == 1:
        morph_mask = np.array([[0.34, 0.34, 0.34], [0.34, 1.00, 0.34],
                               [0.34, 0.34, 0.34]])
        new_img = binary_closing(shifted_img != 0,
                                 structure=morph_mask,
                                 iterations=1).astype(np.uint8)
        new_img *= 255
    else:
        new_img = shifted_img

    return new_img


if __name__ == "__main__":
    mesh_dir = "/data/cvfs/hjhb2/projects/deep_optimiser/example_meshes/"
    obj_paths = os.listdir(mesh_dir)
    for obj_path in obj_paths:
        mesh = Mesh(os.path.join(mesh_dir, obj_path))
        silh = mesh.render_silhouette(dim=[256, 256], show=True)
        normalised_silh = normalise_img(silh, dim=(128, 128))

        #plt.imshow(silh_cropped, cmap="gray")
        plt.imshow(normalised_silh, cmap="gray")
        plt.show()

        augmented_silh = augment_image(normalised_silh)

        plt.imshow(augmented_silh, cmap="gray")
        plt.show()
    np.zeros((data_samples, )),
    np.zeros((data_samples, 85)),
    np.zeros((data_samples, 85)),
    np.zeros((data_samples, 85)),
    np.zeros((data_samples, 85))
]

# Render silhouettes for the callback data
num_samples = 5
cb_indices = X_indices[:num_samples]
cb_params = X_params[:num_samples]
cb_pcs = X_pcs[:num_samples]
X_cb = [np.array(cb_indices), np.array(cb_params), np.array(cb_pcs)]
silh_cb = []
for pc in cb_pcs:
    silh = Mesh(pointcloud=pc).render_silhouette(show=False)
    silh_cb.append(silh)
""" Model set-up """

# Callback functions
# Create a model checkpoint after every few epochs
model_save_checkpoint = tf.keras.callbacks.ModelCheckpoint(
    model_dir + "model.{epoch:02d}-{loss:.2f}.hdf5",
    monitor='loss',
    verbose=1,
    save_best_only=False,
    mode='auto',
    period=50,
    save_weights_only=True)

# Predict on sample params at the end of every few epochs
예제 #5
0
def get_pc_and_silh(path):
    mesh = Mesh(filepath=path)
    pc = mesh.render_silhouette_with_closing(show=False, closing=False)
    silh = mesh.render_silhouette_with_closing(show=False, closing=True)

    return pc, silh
예제 #6
0
    def __getitem__(self, item):
        """ Yield batches of data """
        # Load the SMPL model
        #smpl = SMPLModel('./keras_rotationnet_v2_demo_for_hidde/./basicModel_f_lbs_10_207_0_v1.0.0.pkl')
        smpl = self.smpl

        if self.debug:
            if self.debug_X is None:
                Y_batch_params = []
                Y_batch_pc = []
                X_batch = []
                for i in range(self.batch_size):
                    # Generate artificial data
                    pose = 0.65 * (np.random.rand(smpl.pose_shape[0], smpl.pose_shape[1]) - 0.5)
                    beta = 0.2 * (np.random.rand(smpl.beta_shape[0]) - 0.5)
                    trans = np.zeros(smpl.trans_shape[0])
                    #trans = 0.1 * (np.random.rand(smpl.trans_shape[0]) - 0.5)

                    # Create the body mesh
                    pointcloud = smpl.set_params(beta=beta, pose=pose, trans=trans)
                    Y_batch_params.append(np.concatenate([pose.ravel(), beta, trans]))
                    Y_batch_pc.append(pointcloud)

                    # Render the silhouette
                    silhouette = Mesh(pointcloud=pointcloud).render_silhouette(dim=self.img_dim, show=False)
                    X_batch.append(np.array(silhouette))

                # Preprocess the batches and yield them
                Y_batch = [np.array(Y_batch_params), np.array(Y_batch_pc)]
                X_batch = np.array(X_batch, dtype="float32")
                X_batch /= 255
                X_batch = X_batch.reshape((X_batch.shape[0], X_batch.shape[1], X_batch.shape[2], 1))

                self.debug_X = X_batch
                self.debug_Y = Y_batch

            else:
                X_batch = self.debug_X
                Y_batch = self.debug_Y

        else:
            # Split of random and real data
            num_artificial = int(np.round(self.frac_randomised * self.batch_size))
            num_real = int(self.batch_size - num_artificial)

            # Retrieve a random batch of parameters from the data directory
            if num_real > 0:
                data = np.array(os.listdir(self.data_dir))
                Y_batch_ids = data[np.random.randint(low=0, high=data.shape[0], size=num_real)]
            else:
                Y_batch_ids = []

            Y_batch_params = []
            Y_batch_pc = []
            X_batch = []
            for Y_id in Y_batch_ids:
                # Fetch the real data
                Y = np.load(os.path.join(self.data_dir, Y_id))

                # Add a small amount of noise to the data
                Y += np.random.uniform(low=-self.noise, high=self.noise, size=Y.shape)
                Y_batch_params.append(Y)

                # Now generate the silhouette from the SMPL meshes
                # Create the body mesh
                pose = Y[:72]
                beta = Y[72:82]
                trans = Y[82:]
                pointcloud = smpl.set_params(pose.reshape((24, 3)), beta, trans)

                # Render the silhouette
                silhouette = Mesh(pointcloud=pointcloud).render_silhouette(dim=self.img_dim, show=False)
                X_batch.append(np.array(silhouette))

            for i in range(num_artificial):
                # Generate artificial data
                pose = 0.65 * (np.random.rand(smpl.pose_shape[0], smpl.pose_shape[1]) - 0.5)
                beta = 0.2 * (np.random.rand(smpl.beta_shape[0]) - 0.5)
                trans = np.zeros(smpl.trans_shape[0])
                #trans = 0.1 * (np.random.rand(smpl.trans_shape[0]) - 0.5)

                # Create the body mesh
                pointcloud = smpl.set_params(beta=beta, pose=pose, trans=trans)
                Y_batch_params.append(np.concatenate([pose.ravel(), beta, trans]))
                Y_batch_pc.append(pointcloud)

                # Render the silhouette
                silhouette = Mesh(pointcloud=pointcloud).render_silhouette(dim=self.img_dim, show=False)
                X_batch.append(np.array(silhouette))

            # Preprocess the batches and yield them
            Y_batch = [np.array(Y_batch_params), np.array(Y_batch_pc)]
            X_batch = np.array(X_batch, dtype="float32")
            X_batch /= 255
            X_batch = X_batch.reshape((X_batch.shape[0], X_batch.shape[1], X_batch.shape[2], 1))

        #print("X_batch shape " + str(X_batch.shape))
        #print("Y_batch shape " + str(Y_batch.shape))
        #X_batch = list(X_batch)

        return X_batch, Y_batch
#eval_string = ""
#for i in range(len(eval_log)):
#    eval_string += str(optlearner_model.metrics_names[i]) + ": " + str(eval_log[i]) + "  "
#print(eval_string)

# Predict the parameters from the silhouette and generate a mesh
for
    prediction = optlearner_model.predict(test_sample_input)
for i, pred in enumerate(prediction, 1):


    learned_pc = pred[2]

    gt_silhoutte = test_sample_silh[i-1]
    pred_silhouette = Mesh(pointcloud=learned_pc).render_silhouette(show=False)

    diff_silh = abs(gt_silhouette - pred_silhouette)
    #print(diff_silh.shape)
    #cv2.imshow("Diff silh", diff_silh)
    #cv2.imwrite(os.path.join(self.pred_path, "{}_epoch.{:03d}.diff_silh_{:03d}.png".format(data_type, epoch + 1, i)), diff_silh.astype("uint8"))
    silh_comp = np.concatenate([gt_silhouette, pred_silhouette, diff_silh])
    cv2.imwrite(os.path.join(test_vis_dir, "{}_epoch.{:05d}.silh_comp_{:03d}.png".format(data_type, epoch + 1, i)), silh_comp.astype("uint8"))


#pred_params = prediction[0]
#real_params = Y_test[0]
#
#for pred in pred_params:
#    pointcloud = smpl.set_params(pred[10:82], pred[0:10], pred[82:85])
#    pred_silhouette = Mesh(pointcloud=pointcloud).render_silhouette()