예제 #1
0
    def apply(self, mp: MpDmFull, canonicalise=False):
        assert mp.is_mpdm
        assert not canonicalise
        no_dissipation = self.h_mpo.contract(mp) - mp.contract(self.h_mpo)
        if self.dissipation == 0:
            return no_dissipation
        # create and destroy operators
        pm_operators: List[Tuple[Mpo, Mpo]] = mp.mol_list.get_mpos(
            "lindblad_pm", calc_lindblad_pm)
        applied_terms = []
        for b, b_dag in pm_operators:
            res = b.apply(mp).apply(b_dag)
            for mt in res:
                if mt.nearly_zero():
                    # discard vacuum states
                    break
            else:
                applied_terms.append(res)

        if len(applied_terms) == 0:
            assert mp.ph_occupations.sum() == 0
            return no_dissipation
        summed_term = compressed_sum(applied_terms)
        bdb_operator: Mpo = mp.mol_list.get_mpos("lindblad_bdb",
                                                 calc_lindblad_bdb)
        # any room for optimization? are there any simple relations between the two terms?
        try:
            lindblad = summed_term - 0.5 * (bdb_operator.contract(mp, True) +
                                            mp.contract(bdb_operator, True))
        except EmptyMatrixError:
            lindblad = summed_term
        ret = no_dissipation + 1j * self.dissipation * lindblad
        return ret
예제 #2
0
def calc_lindblad_bdb(mol_list):
    ph_operators = []
    for imol, m in enumerate(mol_list):
        for jph in range(m.n_dmrg_phs):
            bdb = Mpo.ph_onsite(mol_list, r"b^\dagger b", imol, jph)
            bdb.set_threshold(1e-5)
            ph_operators.append(bdb)
    #from functools import reduce
    #return reduce(lambda mps1, mps2: mps1.add(mps2), ph_operators)
    return compressed_sum(ph_operators)
예제 #3
0
 def _construct_flux_operator(self):
     # construct flux operator
     logger.debug("constructing flux operator")
     j_list = []
     for i in range(len(self.mol_list) - 1):
         j1 = Mpo.displacement(self.mol_list, i,
                               i + 1).scale(self.mol_list.j_matrix[i,
                                                                   i + 1])
         j1.compress_config.threshold = 1e-5
         j2 = j1.conj_trans().scale(-1)
         j_list.extend([j1, j2])
     j_oper = compressed_sum(j_list, batchsize=10)
     logger.debug(f"operator bond dim: {j_oper.bond_dims}")
     return j_oper
예제 #4
0
    def _construct_flux_operator(self):
        # construct flux operator
        logger.info("constructing 1-d Holstein model flux operator ")

        if isinstance(self.mol_list, MolList):
            if self.mol_list.periodic:
                itera = range(len(self.mol_list))
            else:
                itera = range(len(self.mol_list) - 1)
            j_list = []
            for i in itera:
                conne = (i + 1) % len(self.mol_list)  # connect site index
                j1 = Mpo.intersite(self.mol_list, {
                    i: r"a",
                    conne: r"a^\dagger"
                }, {}, Quantity(self.mol_list.j_matrix[i, conne]))
                j1.compress_config.threshold = 1e-8
                j2 = j1.conj_trans().scale(-1)
                j_list.extend([j1, j2])
            j_oper = compressed_sum(j_list, batchsize=10)

        elif isinstance(self.mol_list, MolList2):

            e_nsite = self.mol_list.n_edofs
            model = {}
            for i in range(e_nsite):
                conne = (i + 1) % e_nsite  # connect site index
                model[(f"e_{i}", f"e_{conne}")] = [
                    (Op(r"a^\dagger",
                        1), Op("a", -1), -self.mol_list.j_matrix[i, conne]),
                    (Op(r"a", -1), Op(r"a^\dagger",
                                      1), self.mol_list.j_matrix[conne, i])
                ]
            j_oper = Mpo.general_mpo(
                self.mol_list,
                model=model,
                model_translator=ModelTranslator.general_model)
        else:
            assert False
        logger.debug(f"flux operator bond dim: {j_oper.bond_dims}")

        return j_oper
예제 #5
0
 def _evolve_dmrg_prop_and_compress(self, mpo, evolve_dt, config: EvolveConfig = None) -> "Mps":
     if config is None:
         config = self.evolve_config
     assert evolve_dt is not None
     propagation_c = config.rk_config.coeff
     termlist = [self]
     # don't let bond dim grow when contracting
     orig_compress_config = self.compress_config
     contract_compress_config = self.compress_config.copy()
     if contract_compress_config.criteria is CompressCriteria.threshold:
         contract_compress_config.criteria = CompressCriteria.both
     contract_compress_config.min_dims = None
     contract_compress_config.max_dims = np.array(self.bond_dims) + 4
     self.compress_config = contract_compress_config
     while len(termlist) < len(propagation_c):
         termlist.append(mpo.contract(termlist[-1]))
     # bond dim can grow after adding
     for t in termlist:
         t.compress_config = orig_compress_config
     if config.adaptive:
         config.check_valid_dt(evolve_dt)
         while True:
             scaled_termlist = []
             for idx, term in enumerate(termlist):
                 scale = (-1.0j * config.evolve_dt) ** idx * propagation_c[idx]
                 scaled_termlist.append(term.scale(scale))
             del term
             new_mps1 = compressed_sum(scaled_termlist[:-1])._dmrg_normalize()
             new_mps2 = compressed_sum([new_mps1, scaled_termlist[-1]])._dmrg_normalize()
             angle = new_mps1.angle(new_mps2)
             energy1 = self.expectation(mpo)
             energy2 = new_mps1.expectation(mpo)
             rtol = config.adaptive_rtol  # default to 1e-3
             p = (rtol / (np.sqrt(2 * abs(1 - angle)) + 1e-30)) ** 0.2 * 0.8
             logger.debug(f"angle: {angle}. e1: {energy1}. e2: {energy2}, p: {p}")
             d_energy = config.d_energy
             if abs(energy1 - energy2) < d_energy and 0.5 < p:
                 # converged
                 if abs(config.evolve_dt - evolve_dt) / abs(evolve_dt) < 1e-5:
                     # equal evolve_dt
                     if abs(energy1 - energy2) < (d_energy/10) and 1.1 < p:
                         # a larger dt could be used
                         config.evolve_dt *= min(p, 1.5)
                         logger.debug(
                             f"evolution easily converged, new evolve_dt: {config.evolve_dt}"
                         )
                     # First exit
                     new_mps2.evolve_config.evolve_dt = config.evolve_dt
                     return new_mps2
                 if abs(config.evolve_dt) < abs(evolve_dt):
                     # step smaller than required
                     new_dt = evolve_dt - config.evolve_dt
                     logger.debug(f"remaining: {new_dt}")
                     # Second exit
                     new_mps2.evolve_config.evolve_dt = config.evolve_dt
                     del new_mps1, termlist, scaled_termlist  # memory consuming and not useful anymore
                     return new_mps2._evolve_dmrg_prop_and_compress(mpo, new_dt, config)
                 else:
                     # shouldn't happen.
                     raise ValueError(
                         f"evolve_dt in config: {config.evolve_dt}, in arg: {evolve_dt}"
                     )
             else:
                 # not converged
                 config.evolve_dt /= 2
                 logger.debug(
                     f"evolution not converged, new evolve_dt: {config.evolve_dt}"
                 )
     else:
         for idx, term in enumerate(termlist):
             term.scale(
                 (-1.0j * evolve_dt) ** idx * propagation_c[idx], inplace=True
             )
         return compressed_sum(termlist)
예제 #6
0
    def analysis_dominant_config(self, thresh=0.8, alias=None, tda_m_trunc=20,
            return_compressed_mps=False):
        r""" analyze the dominant configuration of each tda root.
            The algorithm is to compress the tda wavefunction to a rank-1 Hartree
            state and get the ci coefficient of the largest configuration.
            Then, the configuration is subtracted from the tda wavefunction and
            redo the first step to get the second largest configuration. The
            two steps continue until the thresh is achieved.
        
        Parameters
        ----------
        thresh: float, optional
            the threshold to stop the analysis procedure of each root. 
            :math:`\sum_i |c_i|^2 > thresh`. Default is 0.8.
        alias: dict, optional
            The alias of each site. For example, ``alias={0:"v_0", 1:"v_2",
            2:"v_1"}``. Default is `None`. 
        tda_m_trunc: int, optional
            the ``m`` to compress a tda wavefunction. Default is 20.
        return_compressed_mps: bool, optional
            If ``True``, return the tda excited state as a single compressed
            mps. Default is `False`.
        
        Returns
        -------
        configs: dict
            The dominant configration of each root.
            ``configs = {0:[(config0, config_name0, ci_coeff0),(config1,
            config_name1, ci_coeff1),...], 1:...}``
        compressed_mps: List[renormalizer.mps.Mps]
            see the description in ``return_compressed_mps``.
        
        Note
        ----
        The compressed_mps is an approximation of the tda wavefunction with
        ``m=tda_m_trunc``.
        """

        mps_l_cano, mps_r_cano, tangent_u, tda_coeff_list = self.wfn
            
        if alias is not None:
            assert len(alias) == mps_l_cano.site_num
        
        compressed_mps = []
        for iroot in range(self.nroots):
            logger.info(f"iroot: {iroot}")
            tda_coeff = tda_coeff_list[iroot]
            mps_tangent_list = []
            weight = []
            for ims in range(mps_l_cano.site_num):
                if tangent_u[ims] is None:
                    assert tda_coeff[ims] is None
                    continue
                weight.append(np.sum(tda_coeff[ims]**2))
                mps_tangent = merge(mps_l_cano, mps_r_cano, ims+1) 
                mps_tangent[ims] = asnumpy(tensordot(tangent_u[ims],
                    tda_coeff[ims],[-1,0]))
                mps_tangent_list.append(mps_tangent)
            
            assert np.allclose(np.sum(weight), 1)
            # sort the mps_tangent from large weight to small weight
            mps_tangent_list = [mps_tangent_list[i] for i in np.argsort(weight,axis=None)[::-1]]

            coeff_square_sum = 0
            mps_delete = None
            
            config_visited = []
            while coeff_square_sum < thresh:
                if mps_delete is None:
                    # first compress it to M=tda_m_trunc
                    mps_rank1 = compressed_sum(mps_tangent_list, batchsize=5,
                            temp_m_trunc=tda_m_trunc)
                else:
                    mps_rank1 = compressed_sum([mps_delete] + mps_tangent_list,
                            batchsize=5, temp_m_trunc=tda_m_trunc)
                if coeff_square_sum == 0 and return_compressed_mps:
                    compressed_mps.append(mps_rank1.copy())       
                mps_rank1 = mps_rank1.canonicalise().compress(temp_m_trunc=1)
                
                # get config with the largest coeff
                config = []
                for ims, ms in enumerate(mps_rank1):
                    ms = ms.array.flatten()**2
                    quanta = int(np.argmax(ms))
                    config.append(quanta)
               
                # check if the config has been visited
                if config in config_visited:
                    break
                
                config_visited.append(config)

                ci_coeff_list = []
                for mps_tangent in mps_tangent_list:
                    sentinel = xp.ones((1,1))
                    for ims, ms in enumerate(mps_tangent):
                        sentinel = sentinel.dot(asxp(ms[:,config[ims],:]))
                    ci_coeff_list.append(float(sentinel[0,0]))
                ci_coeff = np.sum(ci_coeff_list)
                coeff_square_sum += ci_coeff**2
                
                if alias is not None:
                    config_name = [f"{quanta}"+f"{alias[isite]}" for isite, quanta
                            in enumerate(config) if quanta != 0]
                    config_name = " ".join(config_name)
                    self.configs[iroot].append((config, config_name, ci_coeff))
                    logger.info(f"config: {config}, {config_name}")
                else:
                    self.configs[iroot].append((config, ci_coeff))
                    logger.info(f"config: {config}")

                logger.info(f"ci_coeff: {ci_coeff}, weight:{ci_coeff**2}")

                condition = {dof:config[idof] for idof, dof in
                        enumerate(self.model.dofs)}
                mps_delete_increment = Mps.hartree_product_state(self.model, condition).scale(-ci_coeff)
                if mps_delete is None:
                    mps_delete = mps_delete_increment
                else:
                    mps_delete = mps_delete + mps_delete_increment

            logger.info(f"coeff_square_sum: {coeff_square_sum}")
        
        return self.configs, compressed_mps