def hop(x): # H*X nonlocal count count += 1 assert len(x) == xsize tda_coeff = reshape_x(x) res = [np.zeros_like(coeff) if coeff is not None else None for coeff in tda_coeff] # fix ket and sweep bra and accumulate into res for ims in range(site_num): if tda_coeff[ims] is None: assert tangent_u[ims] is None continue # mix-canonical mps mps_tangent = merge(mps_l_cano, mps_r_cano, ims+1) mps_tangent[ims] = tensordot(tangent_u[ims], tda_coeff[ims], (-1, 0)) mps_tangent_conj = mps_r_cano.copy() environ = Environ(mps_tangent, mpo, "R", mps_conj=mps_tangent_conj) for ims_conj in range(site_num): ltensor = environ.GetLR( "L", ims_conj-1, mps_tangent, mpo, itensor=None, mps_conj=mps_tangent_conj, method="System" ) rtensor = environ.GetLR( "R", ims_conj+1, mps_tangent, mpo, itensor=None, mps_conj=mps_tangent_conj, method="Enviro" ) if tda_coeff[ims_conj] is not None: # S-a l-S # d # O-b-O-f-O # e # S-c k-S path = [ ([0, 1], "abc, cek -> abek"), ([2, 0], "abek, bdef -> akdf"), ([1, 0], "akdf, lfk -> adl"), ] out = multi_tensor_contract( path, ltensor, asxp(mps_tangent[ims_conj]), asxp(mpo[ims_conj]), rtensor ) res[ims_conj] += asnumpy(tensordot(tangent_u[ims_conj], out, ([0,1], [0,1]))) # mps_conj combine mps_tangent_conj[ims_conj] = mps_l_cano[ims_conj] res = [mat for mat in res if mat is not None] return np.concatenate(res, axis=None)
def optimize_mps_dmrg(mps, mpo): """ 1 or 2 site optimization procedure """ method = mps.optimize_config.method procedure = mps.optimize_config.procedure inverse = mps.optimize_config.inverse nroots = mps.optimize_config.nroots assert method in ["2site", "1site"] # print("optimization method", method) nexciton = mps.nexciton # construct the environment matrix environ = Environ() environ.construct(mps, mps, mpo, "L") nMPS = len(mps) # construct each sweep cycle scheme if method == "1site": loop = [["R", i] for i in range(nMPS - 1, -1, -1)] + [["L", i] for i in range(0, nMPS)] else: loop = [["R", i] for i in range(nMPS - 1, 0, -1)] + [["L", i] for i in range(1, nMPS)] # initial matrix ltensor = ones((1, 1, 1)) rtensor = ones((1, 1, 1)) energies = [] for isweep, (mmax, percent) in enumerate(procedure): logger.debug(f"mmax, percent: {mmax}, {percent}") logger.debug(f"energy: {mps.expectation(mpo)}") logger.debug(f"{mps}") for system, imps in loop: if system == "R": lmethod, rmethod = "Enviro", "System" else: lmethod, rmethod = "System", "Enviro" if method == "1site": lsite = imps - 1 addlist = [imps] else: lsite = imps - 2 addlist = [imps - 1, imps] ltensor = environ.GetLR("L", lsite, mps, mps, mpo, itensor=ltensor, method=lmethod) rtensor = environ.GetLR("R", imps + 1, mps, mps, mpo, itensor=rtensor, method=rmethod) # get the quantum number pattern qnmat, qnbigl, qnbigr = construct_qnmat(mps, mpo.ephtable, mpo.pbond_list, addlist, method, system) cshape = qnmat.shape # hdiag tmp_ltensor = einsum("aba -> ba", ltensor) tmp_MPOimps = einsum("abbc -> abc", mpo[imps]) tmp_rtensor = einsum("aba -> ba", rtensor) if method == "1site": # S-a c f-S # O-b-O-g-O # S-a c f-S path = [([0, 1], "ba, bcg -> acg"), ([1, 0], "acg, gf -> acf")] hdiag = multi_tensor_contract(path, tmp_ltensor, tmp_MPOimps, tmp_rtensor)[(qnmat == nexciton)] # initial guess b-S-c # a cguess = mps[imps][qnmat == nexciton] else: # S-a c d f-S # O-b-O-e-O-g-O # S-a c d f-S tmp_MPOimpsm1 = einsum("abbc -> abc", mpo[imps - 1]) path = [ ([0, 1], "ba, bce -> ace"), ([0, 1], "edg, gf -> edf"), ([0, 1], "ace, edf -> acdf"), ] hdiag = multi_tensor_contract(path, tmp_ltensor, tmp_MPOimpsm1, tmp_MPOimps, tmp_rtensor)[(qnmat == nexciton)] # initial guess b-S-c-S-e # a d cguess = tensordot(mps[imps - 1], mps[imps], axes=1)[qnmat == nexciton] cguess = cguess.asnumpy() hdiag *= inverse nonzeros = np.sum(qnmat == nexciton) # print("Hmat dim", nonzeros) def hop(c): # convert c to initial structure according to qn pattern cstruct = cvec2cmat(cshape, c, qnmat, nexciton) if method == "1site": # S-a l-S # d # O-b-O-f-O # e # S-c k-S path = [ ([0, 1], "abc, adl -> bcdl"), ([2, 0], "bcdl, bdef -> clef"), ([1, 0], "clef, lfk -> cek"), ] cout = multi_tensor_contract(path, ltensor, Matrix(cstruct), mpo[imps], rtensor) # for small matrices, check hermite: # a=tensordot(ltensor, mpo[imps], ((1), (0))) # b=tensordot(a, rtensor, ((4), (1))) # c=b.transpose((0, 2, 4, 1, 3, 5)) # d=c.reshape(16, 16) else: # S-a l-S # d g # O-b-O-f-O-j-O # e h # S-c k-S path = [ ([0, 1], "abc, adgl -> bcdgl"), ([3, 0], "bcdgl, bdef -> cglef"), ([2, 0], "cglef, fghj -> clehj"), ([1, 0], "clehj, ljk -> cehk"), ] cout = multi_tensor_contract( path, ltensor, Matrix(cstruct), mpo[imps - 1], mpo[imps], rtensor, ) # convert structure c to 1d according to qn return inverse * cout.asnumpy()[qnmat == nexciton] if nroots != 1: cguess = [cguess] for iroot in range(nroots - 1): cguess.append(np.random.random([nonzeros]) - 0.5) precond = lambda x, e, *args: x / (hdiag.asnumpy() - e + 1e-4) e, c = davidson(hop, cguess, precond, max_cycle=100, nroots=nroots, max_memory=64000) # scipy arpack solver : much slower than davidson # A = spslinalg.LinearOperator((nonzeros,nonzeros), matvec=hop) # e, c = spslinalg.eigsh(A,k=1, which="SA",v0=cguess) # print("HC loops:", count[0]) # logger.debug(f"isweep: {isweep}, e: {e}") energies.append(e) cstruct = cvec2cmat(cshape, c, qnmat, nexciton, nroots=nroots) if nroots == 1: # direct svd the coefficient matrix mt, mpsdim, mpsqn, compmps = renormalization_svd( cstruct, qnbigl, qnbigr, system, nexciton, Mmax=mmax, percent=percent, ) else: # diagonalize the reduced density matrix mt, mpsdim, mpsqn, compmps = renormalization_ddm( cstruct, qnbigl, qnbigr, system, nexciton, Mmax=mmax, percent=percent, ) if method == "1site": mps[imps] = mt if system == "L": if imps != len(mps) - 1: mps[imps + 1] = tensordot(compmps, mps[imps + 1], axes=1) mps.qn[imps + 1] = mpsqn else: mps[imps] = tensordot(mps[imps], compmps, axes=1) mps.qn[imps + 1] = [0] else: if imps != 0: mps[imps - 1] = tensordot(mps[imps - 1], compmps, axes=1) mps.qn[imps] = mpsqn else: mps[imps] = tensordot(compmps, mps[imps], axes=1) mps.qn[imps] = [0] else: if system == "L": mps[imps - 1] = mt mps[imps] = compmps else: mps[imps] = mt mps[imps - 1] = compmps # mps.dim_list[imps] = mpsdim mps.qn[imps] = mpsqn energies = np.array(energies) if nroots == 1: logger.debug("Optimization complete, lowest energy = %g", energies.min()) return energies
def _evolve_dmrg_tdvp_ps(self, mpo, evolve_dt) -> "Mps": # PhysRevB.94.165116 # TDVP projector splitting imag_time = np.iscomplex(evolve_dt) if imag_time: mps = self.copy() mps_conj = mps else: mps = self.to_complex() mps_conj = mps.conj() # another copy, so 3x memory is used. # construct the environment matrix environ = Environ() # almost half is not used. Not a big deal. environ.construct(mps, mps_conj, mpo, "L") environ.construct(mps, mps_conj, mpo, "R") # a workaround for https://github.com/scipy/scipy/issues/10164 if imag_time: evolve_dt = -evolve_dt.imag # used in calculating derivatives coef = -1 else: coef = 1j # statistics for debug output cmf_rk_steps = [] USE_RK = self.evolve_config.tdvp_ps_rk4 # sweep for 2 rounds for i in range(2): for imps in mps.iter_idx_list(full=True): system = "L" if mps.left else "R" ltensor = environ.read("L", imps - 1) rtensor = environ.read("R", imps + 1) shape = list(mps[imps].shape) l_array = ltensor.array r_array = rtensor.array hop = hop_factory(l_array, r_array, mpo[imps].array, len(shape)) def hop_svt(ms): # S-a l-S # # O-b - b-O # # S-c k-S path = [([0, 1], "abc, ck -> abk"), ([1, 0], "abk, lbk -> al")] HC = multi_tensor_contract(path, l_array, ms, r_array) return HC if USE_RK: def func(t, y): return hop(y.reshape(shape)).ravel() / coef sol = solve_ivp( func, (0, evolve_dt / 2.0), mps[imps].ravel().array, method="RK45" ) cmf_rk_steps.append(len(sol.t)) mps_t = sol.y[:, -1] else: # Can't use the same func because here H should be Hermitian def func(y): return hop(y.reshape(shape)).ravel() mps_t = expm_krylov(func, (evolve_dt / 2) / coef, mps[imps].ravel().array) mps_t = mps_t.reshape(shape) qnbigl, qnbigr = mps._get_big_qn(imps) u, qnlset, v, qnrset = svd_qn.Csvd( asnumpy(mps_t), qnbigl, qnbigr, mps.qntot, QR=True, system=system, full_matrices=False, ) vt = v.T if mps.is_left_canon and imps != 0: mps[imps] = vt.reshape([-1] + shape[1:]) mps_conj[imps] = mps[imps].conj() mps.qn[imps] = qnrset rtensor = environ.GetLR( "R", imps, mps, mps_conj, mpo, itensor=rtensor, method="System" ) r_array = rtensor.array # reverse update u site shape_u = u.shape if USE_RK: def func_u(t, y): return hop_svt(y.reshape(shape_u)).ravel() / coef sol_u = solve_ivp( func_u, (0, -evolve_dt / 2), u.ravel(), method="RK45" ) cmf_rk_steps.append(len(sol_u.t)) mps_t = sol_u.y[:, -1] else: def func_u(y): return hop_svt(y.reshape(shape_u)).ravel() mps_t = expm_krylov(func_u, (-evolve_dt / 2) / coef, u.ravel()) mps_t = mps_t.reshape(shape_u) mps[imps - 1] = tensordot( mps[imps - 1].array, mps_t, axes=(-1, 0), ) mps_conj[imps - 1] = mps[imps - 1].conj() elif mps.is_right_canon and imps != len(mps) - 1: mps[imps] = u.reshape(shape[:-1] + [-1]) mps_conj[imps] = mps[imps].conj() mps.qn[imps + 1] = qnlset ltensor = environ.GetLR( "L", imps, mps, mps_conj, mpo, itensor=ltensor, method="System" ) l_array = ltensor.array # reverse update svt site shape_svt = vt.shape if USE_RK: def func_svt(t, y): return hop_svt(y.reshape(shape_svt)).ravel() / coef sol_svt = solve_ivp( func_svt, (0, -evolve_dt / 2), vt.ravel(), method="RK45" ) cmf_rk_steps.append(len(sol_svt.t)) mps_t = sol_svt.y[:, -1] else: def func_svt(y): return hop_svt(y.reshape(shape_svt)).ravel() mps_t = expm_krylov(func_svt, (-evolve_dt / 2) / coef, vt.ravel()) mps_t = mps_t.reshape(shape_svt) mps[imps + 1] = tensordot( mps_t, mps[imps + 1].array, axes=(1, 0), ) mps_conj[imps + 1] = mps[imps + 1].conj() else: mps[imps] = mps_t mps_conj[imps] = mps[imps].conj() mps._switch_direction() if USE_RK: steps_stat = stats.describe(cmf_rk_steps) logger.debug(f"TDVP-PS CMF steps: {steps_stat}") mps.evolve_config.stat = steps_stat return mps
def _evolve_dmrg_tdvp_mctdhnew(self, mpo, evolve_dt) -> "Mps": # new regularization scheme # JCP 148, 124105 (2018) # JCP 149, 044119 (2018) # a workaround for https://github.com/scipy/scipy/issues/10164 imag_time = np.iscomplex(evolve_dt) if imag_time: evolve_dt = -evolve_dt.imag # used in calculating derivatives coef = -1 else: coef = 1j if self.is_left_canon: assert self.check_left_canonical() self.canonicalise() mps = self.to_complex(inplace=True) # construct the environment matrix environ = Environ() environ.construct(mps, mps.conj(), mpo, "R") # initial matrix ltensor = ones((1, 1, 1)) rtensor = ones((1, 1, 1)) new_mps = mps.metacopy() # statistics for debug output cmf_rk_steps = [] for imps in range(len(mps)): shape = list(mps[imps].shape) system = "L" if mps.left else "R" qnbigl, qnbigr = mps._get_big_qn(imps) u, s, qnlset, v, s, qnrset = svd_qn.Csvd( mps[imps].asnumpy(), qnbigl, qnbigr, mps.qntot, system=system, full_matrices=False, ) vt = v.T mps[imps] = u.reshape(shape[:-1] + [-1]) ltensor = environ.GetLR( "L", imps - 1, mps, mps.conj(), mpo, itensor=ltensor, method="System" ) rtensor = environ.GetLR( "R", imps + 1, mps, mps.conj(), mpo, itensor=rtensor, method="Enviro" ) epsilon = 1e-10 epsilon = np.sqrt(epsilon) s = s + epsilon * np.exp(-s / epsilon) svt = Matrix(np.diag(s).dot(vt)) rtensor = tensordot(rtensor, svt, axes=(2, 1)) rtensor = tensordot(Matrix(vt).conj(), rtensor, axes=(1, 0)) if imps != len(mps) - 1: mps[imps + 1] = tensordot(svt, mps[imps + 1], axes=(-1, 0)) mps.qn[imps + 1] = qnlset new_mps.qn[imps + 1] = qnlset.copy() S_inv = xp.diag(1.0 / s) hop = hop_factory(ltensor, rtensor, mpo[imps], len(shape)) func = integrand_func_factory(shape, hop, imps == len(mps) - 1, S_inv, coef) sol = solve_ivp( func, (0, evolve_dt), mps[imps].ravel().array, method="RK45" ) cmf_rk_steps.append(len(sol.t)) ms = sol.y[:, -1].reshape(shape) if imps == len(mps) - 1: new_mps[imps] = ms * s[0] else: new_mps[imps] = ms mps._switch_direction() new_mps._switch_direction() new_mps.canonicalise() steps_stat = stats.describe(cmf_rk_steps) logger.debug(f"TDVP-MCTDH CMF steps: {steps_stat}") # new_mps.evolve_config.stat = steps_stat return new_mps
def _evolve_dmrg_tdvp_mctdh(self, mpo, evolve_dt) -> "Mps": # TDVP for original MCTDH if self.is_right_canon: assert self.check_right_canonical() self.canonicalise() # a workaround for https://github.com/scipy/scipy/issues/10164 imag_time = np.iscomplex(evolve_dt) if imag_time: evolve_dt = -evolve_dt.imag # used in calculating derivatives coef = -1 else: coef = 1j # qn for this method has not been implemented self.use_dummy_qn = True self.clear_qn() mps = self.to_complex(inplace=True) mps_conj = mps.conj() environ = Environ() environ.construct(mps, mps_conj, mpo, "R") # initial matrix ltensor = np.ones((1, 1, 1)) rtensor = np.ones((1, 1, 1)) new_mps = self.metacopy() cmf_rk_steps = [] for imps in range(len(mps)): ltensor = environ.GetLR( "L", imps - 1, mps, mps_conj, mpo, itensor=ltensor, method="System" ) rtensor = environ.GetLR( "R", imps + 1, mps, mps_conj, mpo, itensor=rtensor, method="Enviro" ) # density matrix S = transferMat(mps, mps_conj, "R", imps + 1).asnumpy() epsilon = 1e-8 w, u = scipy.linalg.eigh(S) try: w = w + epsilon * np.exp(-w / epsilon) except FloatingPointError: logger.warning(f"eigenvalue of density matrix contains negative value") w -= 2 * w.min() w = w + epsilon * np.exp(-w / epsilon) # print # "sum w=", np.sum(w) # S = u.dot(np.diag(w)).dot(np.conj(u.T)) S_inv = xp.asarray(u.dot(np.diag(1.0 / w)).dot(np.conj(u.T))) # pseudo inverse # S_inv = scipy.linalg.pinvh(S,rcond=1e-2) shape = mps[imps].shape hop = hop_factory(ltensor, rtensor, mpo[imps], len(shape)) func = integrand_func_factory(shape, hop, imps == len(mps) - 1, S_inv, coef) sol = solve_ivp( func, (0, evolve_dt), mps[imps].ravel().array, method="RK45" ) # print # "CMF steps:", len(sol.t) cmf_rk_steps.append(len(sol.t)) new_mps[imps] = sol.y[:, -1].reshape(shape) new_mps[imps].check_lortho() # print # "orthogonal1", np.allclose(np.tensordot(MPSnew[imps], # np.conj(MPSnew[imps]), axes=([0, 1], [0, 1])), # np.diag(np.ones(MPSnew[imps].shape[2]))) steps_stat = stats.describe(cmf_rk_steps) logger.debug(f"TDVP-MCTDH CMF steps: {steps_stat}") return new_mps
def kernel(self, restart=False, include_psi0=False): r"""calculate the roots Parameters ---------- restart: bool, optional if restart from the former converged root. Default is ``False``. If ``restart = True``, ``include_psi0`` must be the same as the former calculation. include_psi0: bool, optional if the basis of Hamiltonian includes the ground state :math:`\Psi_0`. Default is ``False``. Returns ------- e: np.ndarray the energy of the states, if ``include_psi0 = True``, the first element is the ground state energy, otherwise, it is the energy of the first excited state. """ # right canonical mps mpo = self.hmpo nroots = self.nroots algo = self.algo site_num = mpo.site_num if not restart: # make sure that M is not redundant near the edge mps = self.mps.ensure_right_canon().canonicalise().normalize().canonicalise() logger.debug(f"reference mps shape, {mps}") mps_r_cano = mps.copy() assert mps.to_right tangent_u = [] for ims, ms in enumerate(mps): shape = list(ms.shape) u, s, vt = scipy.linalg.svd(ms.l_combine(), full_matrices=True) rank = len(s) if include_psi0 and ims == site_num-1: tangent_u.append(u.reshape(shape[:-1]+[-1])) else: if rank < u.shape[1]: tangent_u.append(u[:,rank:].reshape(shape[:-1]+[-1])) else: tangent_u.append(None) # the tangent space is None mps[ims] = u[:,:rank].reshape(shape[:-1]+[-1]) vt = xp.einsum("i, ij -> ij", asxp(s), asxp(vt)) if ims == site_num-1: assert vt.size == 1 and xp.allclose(vt, 1) else: mps[ims+1] = asnumpy(tensordot(vt, mps[ims+1], ([-1],[0]))) mps_l_cano = mps.copy() mps_l_cano.to_right = False mps_l_cano.qnidx = site_num-1 else: mps_l_cano, mps_r_cano, tangent_u, tda_coeff_list = self.wfn cguess = [] for iroot in range(len(tda_coeff_list)): tda_coeff = tda_coeff_list[iroot] x = [c.flatten() for c in tda_coeff if c is not None] x = np.concatenate(x,axis=None) cguess.append(x) cguess = np.stack(cguess, axis=1) xshape = [] xsize = 0 for ims in range(site_num): if tangent_u[ims] is None: xshape.append((0,0)) else: if ims == site_num-1: xshape.append((tangent_u[ims].shape[-1], 1)) else: xshape.append((tangent_u[ims].shape[-1], mps_r_cano[ims+1].shape[0])) xsize += np.prod(xshape[-1]) logger.debug(f"DMRG-TDA H dimension: {xsize}") if USE_GPU: oe_backend = "cupy" else: oe_backend = "numpy" mps_tangent = mps_r_cano.copy() environ = Environ(mps_tangent, mpo, "R") hdiag = [] for ims in range(site_num): ltensor = environ.GetLR( "L", ims-1, mps_tangent, mpo, itensor=None, method="System" ) rtensor = environ.GetLR( "R", ims+1, mps_tangent, mpo, itensor=None, method="Enviro" ) if tangent_u[ims] is not None: u = asxp(tangent_u[ims]) tmp = oe.contract("abc, ded, bghe, agl, chl -> ld", ltensor, rtensor, asxp(mpo[ims]), u, u, backend=oe_backend) hdiag.append(asnumpy(tmp)) mps_tangent[ims] = mps_l_cano[ims] hdiag = np.concatenate(hdiag, axis=None) count = 0 # recover the vector-like x back to the ndarray tda_coeff def reshape_x(x): tda_coeff = [] offset = 0 for shape in xshape: if shape == (0,0): tda_coeff.append(None) else: size = np.prod(shape) tda_coeff.append(x[offset:size+offset].reshape(shape)) offset += size assert offset == xsize return tda_coeff def hop(x): # H*X nonlocal count count += 1 assert len(x) == xsize tda_coeff = reshape_x(x) res = [np.zeros_like(coeff) if coeff is not None else None for coeff in tda_coeff] # fix ket and sweep bra and accumulate into res for ims in range(site_num): if tda_coeff[ims] is None: assert tangent_u[ims] is None continue # mix-canonical mps mps_tangent = merge(mps_l_cano, mps_r_cano, ims+1) mps_tangent[ims] = tensordot(tangent_u[ims], tda_coeff[ims], (-1, 0)) mps_tangent_conj = mps_r_cano.copy() environ = Environ(mps_tangent, mpo, "R", mps_conj=mps_tangent_conj) for ims_conj in range(site_num): ltensor = environ.GetLR( "L", ims_conj-1, mps_tangent, mpo, itensor=None, mps_conj=mps_tangent_conj, method="System" ) rtensor = environ.GetLR( "R", ims_conj+1, mps_tangent, mpo, itensor=None, mps_conj=mps_tangent_conj, method="Enviro" ) if tda_coeff[ims_conj] is not None: # S-a l-S # d # O-b-O-f-O # e # S-c k-S path = [ ([0, 1], "abc, cek -> abek"), ([2, 0], "abek, bdef -> akdf"), ([1, 0], "akdf, lfk -> adl"), ] out = multi_tensor_contract( path, ltensor, asxp(mps_tangent[ims_conj]), asxp(mpo[ims_conj]), rtensor ) res[ims_conj] += asnumpy(tensordot(tangent_u[ims_conj], out, ([0,1], [0,1]))) # mps_conj combine mps_tangent_conj[ims_conj] = mps_l_cano[ims_conj] res = [mat for mat in res if mat is not None] return np.concatenate(res, axis=None) if algo == "davidson": if restart: cguess = [cguess[:,i] for i in range(cguess.shape[1])] else: cguess = [np.random.random(xsize) - 0.5] precond = lambda x, e, *args: x / (hdiag - e + 1e-4) e, c = davidson( hop, cguess, precond, max_cycle=100, nroots=nroots, max_memory=64000 ) if nroots == 1: c = [c] c = np.stack(c, axis=1) elif algo == "primme": if not restart: cguess = None def multi_hop(x): if x.ndim == 1: return hop(x) elif x.ndim == 2: return np.stack([hop(x[:,i]) for i in range(x.shape[1])],axis=1) else: assert False def precond(x): if x.ndim == 1: return np.einsum("i, i -> i", 1/(hdiag+1e-4), x) elif x.ndim ==2: return np.einsum("i, ij -> ij", 1/(hdiag+1e-4), x) else: assert False A = scipy.sparse.linalg.LinearOperator((xsize,xsize), matvec=multi_hop, matmat=multi_hop) M = scipy.sparse.linalg.LinearOperator((xsize,xsize), matvec=precond, matmat=precond) e, c = primme.eigsh(A, k=min(nroots,xsize), which="SA", v0=cguess, OPinv=M, method="PRIMME_DYNAMIC", tol=1e-6) else: assert False logger.debug(f"H*C times: {count}") tda_coeff_list = [] for iroot in range(nroots): tda_coeff_list.append(reshape_x(c[:,iroot])) self.e = np.array(e) self.wfn = [mps_l_cano, mps_r_cano, tangent_u, tda_coeff_list] return self.e
def variational_compress(self, mpo=None, guess=None): r"""Variational compress an mps/mpdm/mpo Parameters ---------- mpo : renormalizer.mps.Mpo, optional Default is ``None``. if mpo is not ``None``, the returned mps is an approximation of ``mpo @ self`` guess : renormalizer.mps.MatrixProduct, optional Initial guess of compressed mps/mpdm/mpo. Default is ``None``. Note ---- the variational compress related configurations is defined in ``self`` if ``guess=None``, otherwise is defined in ``guess`` Returns ------- mp : renormalizer.mps.MatrixProduct a new compressed mps/mpdm/mpo, ``self`` is not overwritten. ``guess`` is overwritten. """ if mpo is None: logger.info( "Recommend to use svd to compress a single mps/mpo/mpdm.") raise NotImplementedError if guess is None: # a minimal representation of self and mpo compressed_mpo = mpo.copy().canonicalise().compress( temp_m_trunc=self.compress_config.vguess_m[0]) compressed_mps = self.copy().canonicalise().compress( temp_m_trunc=self.compress_config.vguess_m[1]) # the attributes of guess would be the same as self guess = compressed_mpo.apply(compressed_mps) mps = guess mps.ensure_left_canon() logger.info(f"initial guess bond dims: {mps.bond_dims}") procedure = mps.compress_config.vprocedure method = mps.compress_config.vmethod environ = Environ(self, mpo, "L", mps_conj=mps.conj()) converged = False for isweep, (mmax, percent) in enumerate(procedure): logger.debug(f"isweep: {isweep}") logger.debug(f"mmax, percent: {mmax}, {percent}") logger.debug(f"mps bond dims: {mps.bond_dims}") for imps in mps.iter_idx_list(full=True): if method == "2site" and \ ((mps.to_right and imps == mps.site_num-1) or ((not mps.to_right) and imps == 0)): break if mps.to_right: lmethod, rmethod = "System", "Enviro" else: lmethod, rmethod = "Enviro", "System" if method == "1site": lidx = imps - 1 cidx = [imps] ridx = imps + 1 elif method == "2site": if mps.to_right: lidx = imps - 1 cidx = [imps, imps + 1] ridx = imps + 2 else: lidx = imps - 2 cidx = [imps - 1, imps] # center site ridx = imps + 1 else: assert False logger.debug(f"optimize site: {cidx}") ltensor = environ.GetLR("L", lidx, self, mpo, itensor=None, method=lmethod, mps_conj=mps.conj()) rtensor = environ.GetLR("R", ridx, self, mpo, itensor=None, method=rmethod, mps_conj=mps.conj()) # get the quantum number pattern qnbigl, qnbigr, qnmat = mps._get_big_qn(cidx) # center mo cmo = [asxp(mpo[idx]) for idx in cidx] cms = [asxp(self[idx]) for idx in cidx] if method == "1site": if cms[0].ndim == 3: # S-a l-S # d # O-b-O-f-O # e # S-c k-S path = [ ([0, 1], "abc, cek -> abek"), ([2, 0], "abek, bdef -> akdf"), ([1, 0], "akdf, lfk -> adl"), ] elif cms[0].ndim == 4: # S-a l-S # d # O-b-O-f-O # e # S-c k-S # g path = [ ([0, 2], "abc, bdef -> acdef"), ([2, 0], "acdef, cegk -> adfgk"), ([1, 0], "adfgk, lfk -> adgl"), ] cout = multi_tensor_contract(path, ltensor, cms[0], cmo[0], rtensor) else: if USE_GPU: oe_backend = "cupy" else: oe_backend = "numpy" if cms[0].ndim == 3: # S-a l-S # d g # O-b-O-f-O-j-O # e h # S-c m k-S cout = oe.contract( "abc, bdef, fghj, ljk, cem, mhk -> adgl", ltensor, cmo[0], cmo[1], rtensor, cms[0], cms[1], backend=oe_backend) elif cms[0].ndim == 4: # S-a l-S # d g # O-b-O-f-O-j-O # e h # S-c m k-S # n p cout = oe.contract( "abc, bdef, fghj, ljk, cenm, mhpk -> adngpl", ltensor, cmo[0], cmo[1], rtensor, cms[0], cms[1], backend=oe_backend) # clean up the elements which do not meet the qn requirements cout[qnmat != mps.qntot] = 0 mps._update_mps(cout, cidx, qnbigl, qnbigr, mmax, percent) mps._switch_direction() # check if convergence if isweep > 0 and percent == 0 and \ mps.distance(mps_old) / np.sqrt(mps.dot(mps.conj()).real) < mps.compress_config.vrtol: converged = True break mps_old = mps.copy() if converged: logger.info("Variational compress is converged!") else: logger.warning( "Variational compress is not converged! Please increase the procedure!" ) # remove the redundant bond dimension near the boundary of the MPS mps.canonicalise() logger.info(f"{mps}") return mps
def optimize_mps(mps: Mps, mpo: Mpo, omega: float = None) -> Tuple[List, Mps]: r""" DMRG ground state algorithm and state-averaged excited states algorithm Parameters ---------- mps : renormalizer.mps.Mps initial guess of mps mpo : renormalizer.mps.Mpo mpo of Hamiltonian omega: float, optional target the eigenpair near omega with special variational function :math:(\hat{H}-\omega)^2. Default is `None`. Returns ------- energy : list list of energy of each marco sweep. :math:`[e_0, e_0, \cdots, e_0]` if ``nroots=1``. :math:`[[e_0, \cdots, e_n], \dots, [e_0, \cdots, e_n]]` if ``nroots=n``. mps : renormalizer.mps.Mps optimized ground state mps. The input mps is overwritten and could not be used anymore. See Also -------- renormalizer.utils.configs.OptimizeConfig : The optimization configuration. """ algo = mps.optimize_config.algo method = mps.optimize_config.method procedure = mps.optimize_config.procedure inverse = mps.optimize_config.inverse nroots = mps.optimize_config.nroots assert method in ["2site", "1site"] logger.info(f"optimization method: {method}") logger.info(f"e_rtol: {mps.optimize_config.e_rtol}") logger.info(f"e_atol: {mps.optimize_config.e_atol}") if USE_GPU: oe_backend = "cupy" else: oe_backend = "numpy" # ensure that mps is left or right-canonical # TODO: start from a mix-canonical MPS if mps.is_left_canon: mps.ensure_right_canon() env = "R" else: mps.ensure_left_canon() env = "L" # in state-averged calculation, contains C of each state for better initial # guess averaged_ms = None # the index of active site of the returned mps res_mps_idx = None # target eigenstate close to omega with (H-omega)^2 # construct the environment matrix if omega is not None: identity = Mpo.identity(mpo.model) mpo = mpo.add(identity.scale(-omega)) environ = Environ(mps, [mpo, mpo], env) else: environ = Environ(mps, mpo, env) macro_iteration_result = [] converged = False for isweep, (mmax, percent) in enumerate(procedure): logger.debug(f"isweep: {isweep}") logger.debug(f"mmax, percent: {mmax}, {percent}") logger.debug(f"{mps}") micro_iteration_result = [] for imps in mps.iter_idx_list(full=True): if method == "2site" and \ ((mps.to_right and imps == mps.site_num-1) or ((not mps.to_right) and imps == 0)): break if mps.to_right: lmethod, rmethod = "System", "Enviro" else: lmethod, rmethod = "Enviro", "System" if method == "1site": lidx = imps - 1 cidx = [imps] ridx = imps + 1 elif method == "2site": if mps.to_right: lidx = imps - 1 cidx = [imps, imps + 1] ridx = imps + 2 else: lidx = imps - 2 cidx = [imps - 1, imps] # center site ridx = imps + 1 else: assert False logger.debug(f"optimize site: {cidx}") if omega is None: operator = mpo else: operator = [mpo, mpo] ltensor = environ.GetLR("L", lidx, mps, operator, itensor=None, method=lmethod) rtensor = environ.GetLR("R", ridx, mps, operator, itensor=None, method=rmethod) # get the quantum number pattern qnbigl, qnbigr, qnmat = mps._get_big_qn(cidx) cshape = qnmat.shape nonzeros = np.sum(qnmat == mps.qntot) logger.debug(f"Hmat dim: {nonzeros}") # center mo cmo = [asxp(mpo[idx]) for idx in cidx] if qnmat.size > 1000 and algo != "direct": # iterative algorithm # diagonal elements of H if omega is None: tmp_ltensor = xp.einsum("aba -> ba", ltensor) tmp_cmo0 = xp.einsum("abbc -> abc", cmo[0]) tmp_rtensor = xp.einsum("aba -> ba", rtensor) if method == "1site": # S-a c f-S # O-b-O-g-O # S-a c f-S path = [([0, 1], "ba, bcg -> acg"), ([1, 0], "acg, gf -> acf")] hdiag = multi_tensor_contract( path, tmp_ltensor, tmp_cmo0, tmp_rtensor)[(qnmat == mps.qntot)] else: # S-a c d f-S # O-b-O-e-O-g-O # S-a c d f-S tmp_cmo1 = xp.einsum("abbc -> abc", cmo[1]) path = [ ([0, 1], "ba, bce -> ace"), ([0, 1], "edg, gf -> edf"), ([0, 1], "ace, edf -> acdf"), ] hdiag = multi_tensor_contract( path, tmp_ltensor, tmp_cmo0, tmp_cmo1, tmp_rtensor)[(qnmat == mps.qntot)] else: if method == "1site": # S-a d h-S # O-b-O-f-O # | e | # O-c-O-g-O # S-a d h-S hdiag = oe.contract( "abca, bdef, cedg, hfgh -> adh", ltensor, cmo[0], cmo[0], rtensor, backend=oe_backend)[(qnmat == mps.qntot)] else: # S-a d h l-S # O-b-O-f-O-j-O # | e i | # O-c-O-g-O-k-O # S-a d h l-S hdiag = oe.contract( "abca, bdef, cedg, fhij, gihk, ljkl -> adhl", ltensor, cmo[0], cmo[0], cmo[1], cmo[1], rtensor, backend=oe_backend)[(qnmat == mps.qntot)] hdiag = asnumpy(hdiag * inverse) # initial guess if method == "1site": # initial guess b-S-c # a if nroots == 1: cguess = [asnumpy(mps[cidx[0]])[qnmat == mps.qntot]] else: cguess = [] if averaged_ms is not None: for ms in averaged_ms: cguess.append(asnumpy(ms)[qnmat == mps.qntot]) else: # initial guess b-S-c-S-e # a d if nroots == 1: cguess = [ asnumpy( tensordot(mps[cidx[0]], mps[cidx[1]], axes=1)[qnmat == mps.qntot]) ] else: cguess = [] if averaged_ms is not None: for ms in averaged_ms: if mps.to_right: cguess.append( asnumpy( tensordot( ms, mps[cidx[1]], axes=1)[qnmat == mps.qntot])) else: cguess.append( asnumpy( tensordot( mps[cidx[0]], ms, axes=1)[qnmat == mps.qntot])) if omega is not None: if method == "1site": # S-a e j-S # O-b-O-g-O # | f | # O-c-O-i-O # S-d h k-S expr = oe.contract_expression( "abcd, befg, cfhi, jgik, aej -> dhk", ltensor, cmo[0], cmo[0], rtensor, cshape, constants=[0, 1, 2, 3]) else: # S-a e j o-S # O-b-O-g-O-l-O # | f k | # O-c-O-i-O-n-O # S-d h m p-S expr = oe.contract_expression( "abcd, befg, cfhi, gjkl, ikmn, olnp, aejo -> dhmp", ltensor, cmo[0], cmo[0], cmo[1], cmo[1], rtensor, cshape, constants=[0, 1, 2, 3, 4, 5]) count = 0 def hop(x): nonlocal count count += 1 clist = [] if x.ndim == 1: clist.append(x) else: for icol in range(x.shape[1]): clist.append(x[:, icol]) res = [] for c in clist: # convert c to initial structure according to qn pattern cstruct = asxp(cvec2cmat(cshape, c, qnmat, mps.qntot)) if omega is None: if method == "1site": # S-a l-S # d # O-b-O-f-O # e # S-c k-S path = [ ([0, 1], "abc, adl -> bcdl"), ([2, 0], "bcdl, bdef -> clef"), ([1, 0], "clef, lfk -> cek"), ] cout = multi_tensor_contract( path, ltensor, cstruct, cmo[0], rtensor) else: # S-a l-S # d g # O-b-O-f-O-j-O # e h # S-c k-S path = [ ([0, 1], "abc, adgl -> bcdgl"), ([3, 0], "bcdgl, bdef -> cglef"), ([2, 0], "cglef, fghj -> clehj"), ([1, 0], "clehj, ljk -> cehk"), ] cout = multi_tensor_contract( path, ltensor, cstruct, cmo[0], cmo[1], rtensor, ) else: cout = expr(cstruct, backend=oe_backend) # convert structure c to 1d according to qn res.append(asnumpy(cout)[qnmat == mps.qntot]) if len(res) == 1: return inverse * res[0] else: return inverse * np.stack(res, axis=1) if len(cguess) < nroots: cguess.extend([ np.random.random([nonzeros]) - 0.5 for i in range(len(cguess), nroots) ]) if algo == "davidson": precond = lambda x, e, *args: x / (hdiag - e + 1e-4) e, c = davidson(hop, cguess, precond, max_cycle=100, nroots=nroots, max_memory=64000) # if one root, davidson return e as np.float #elif algo == "arpack": # # scipy arpack solver : much slower than pyscf/davidson # A = scipy.sparse.linalg.LinearOperator((nonzeros,nonzeros), matvec=hop) # e, c = scipy.sparse.linalg.eigsh(A, k=nroots, which="SA", v0=cguess) # # scipy return numpy.array # if nroots == 1: # e = e[0] #elif algo == "lobpcg": # precond = lambda x: scipy.sparse.diags(1/(hdiag+1e-4)) @ x # A = scipy.sparse.linalg.LinearOperator((nonzeros,nonzeros), # matvec=hop, matmat=hop) # M = scipy.sparse.linalg.LinearOperator((nonzeros,nonzeros), # matvec=precond, matmat=hop) # e, c = scipy.sparse.linalg.lobpcg(A, np.array(cguess).T, # M=M, largest=False) elif algo == "primme": precond = lambda x: scipy.sparse.diags(1 / (hdiag + 1e-4)) @ x A = scipy.sparse.linalg.LinearOperator( (nonzeros, nonzeros), matvec=hop, matmat=hop) M = scipy.sparse.linalg.LinearOperator( (nonzeros, nonzeros), matvec=precond, matmat=hop) e, c = primme.eigsh(A, k=min(nroots, nonzeros), which="SA", v0=np.array(cguess).T, OPinv=M, method="PRIMME_DYNAMIC", tol=1e-6) else: assert False logger.debug(f"use {algo}, HC hops: {count}") else: logger.debug(f"use direct eigensolver") # direct algorithm if omega is None: if method == "1site": # S-a l-S # d # O-b-O-f-O # e # S-c k-S ham = oe.contract("abc,bdef,lfk->adlcek", ltensor, cmo[0], rtensor, backend=oe_backend) ham = ham[:, :, :, qnmat == mps.qntot][ qnmat == mps.qntot, :] * inverse else: # S-a l-S # d g # O-b-O-f-O-j-O # e h # S-c k-S ham = oe.contract("abc,bdef,fghj,ljk->adglcehk", ltensor, cmo[0], cmo[1], rtensor) ham = ham[:, :, :, :, qnmat == mps.qntot][ qnmat == mps.qntot, :] * inverse else: if method == "1site": # S-a e j-S # O-b-O-g-O # | f | # O-c-O-i-O # S-d h k-S ham = oe.contract("abcd, befg, cfhi, jgik -> aejdhk", ltensor, cmo[0], cmo[0], rtensor) ham = ham[:, :, :, qnmat == mps.qntot][ qnmat == mps.qntot, :] * inverse else: # S-a e j o-S # O-b-O-g-O-l-O # | f k | # O-c-O-i-O-n-O # S-d h m p-S ham = oe.contract( "abcd, befg, cfhi, gjkl, ikmn, olnp -> aejodhmp", ltensor, cmo[0], cmo[0], cmo[1], cmo[1], rtensor) ham = ham[:, :, :, :, qnmat == mps.qntot][ qnmat == mps.qntot, :] * inverse w, v = scipy.linalg.eigh(asnumpy(ham)) if nroots == 1: e = w[0] c = v[:, 0] else: e = w[:nroots] c = [ v[:, iroot] for iroot in range(min(nroots, v.shape[1])) ] # if multi roots, both davidson and primme return np.ndarray if nroots > 1: e = e.tolist() logger.debug(f"energy: {e}") micro_iteration_result.append(e) cstruct = cvec2cmat(cshape, c, qnmat, mps.qntot, nroots=nroots) # store the "optimal" mps (usually in the middle of each sweep) if res_mps_idx is not None and res_mps_idx == imps: if nroots == 1: res_mps = mps.copy() res_mps._update_mps(cstruct, cidx, qnbigl, qnbigr, mmax, percent) else: res_mps = [mps.copy() for i in range(len(cstruct))] for iroot in range(len(cstruct)): res_mps[iroot]._update_mps(cstruct[iroot], cidx, qnbigl, qnbigr, mmax, percent) averaged_ms = mps._update_mps(cstruct, cidx, qnbigl, qnbigr, mmax, percent) mps._switch_direction() res_mps_idx = micro_iteration_result.index(min(micro_iteration_result)) macro_iteration_result.append(micro_iteration_result[res_mps_idx]) # check if convergence if isweep > 0 and percent == 0: v1, v2 = sorted(macro_iteration_result)[:2] if np.allclose(v1, v2, rtol=mps.optimize_config.e_rtol, atol=mps.optimize_config.e_atol): converged = True break logger.debug( f"{isweep+1} sweeps are finished, lowest energy = {sorted(macro_iteration_result)[0]}" ) if converged: logger.info("DMRG is converged!") else: logger.warning("DMRG is not converged! Please increase the procedure!") logger.info( f"The lowest two energies: {sorted(macro_iteration_result)[:2]}.") # remove the redundant basis near the edge if nroots == 1: res_mps = res_mps.normalize().ensure_left_canon().canonicalise() logger.info(f"{res_mps}") else: res_mps = [ mp.normalize().ensure_left_canon().canonicalise() for mp in res_mps ] logger.info(f"{res_mps[0]}") return macro_iteration_result, res_mps