def oper_prepare(self, omega): # set up a_oper = (H_0 - e0 - omega) identity = Mpo.identity(self.model).scale(-self.e0 - omega) self.a_oper = self.h_mpo.add(identity)
def test_identity(): identity = Mpo.identity(mol_list) mps = Mps.random(mol_list, nexciton=1, m_max=5) assert mps.expectation(identity) == pytest.approx(mps.dmrg_norm) == pytest.approx(1)
def test_identity(): identity = Mpo.identity(holstein_model) mps = Mps.random(holstein_model, nexciton=1, m_max=5) assert mps.expectation(identity) == pytest.approx( mps.dmrg_norm) == pytest.approx(1)
def oper_prepare(self, omega): identity = Mpo.identity(self.model).scale(omega) self.a_oper = identity.add(self.h_mpo.scale(-1, inplace=False))
def optimize_mps(mps: Mps, mpo: Mpo, omega: float = None) -> Tuple[List, Mps]: r""" DMRG ground state algorithm and state-averaged excited states algorithm Parameters ---------- mps : renormalizer.mps.Mps initial guess of mps mpo : renormalizer.mps.Mpo mpo of Hamiltonian omega: float, optional target the eigenpair near omega with special variational function :math:(\hat{H}-\omega)^2. Default is `None`. Returns ------- energy : list list of energy of each marco sweep. :math:`[e_0, e_0, \cdots, e_0]` if ``nroots=1``. :math:`[[e_0, \cdots, e_n], \dots, [e_0, \cdots, e_n]]` if ``nroots=n``. mps : renormalizer.mps.Mps optimized ground state mps. The input mps is overwritten and could not be used anymore. See Also -------- renormalizer.utils.configs.OptimizeConfig : The optimization configuration. """ algo = mps.optimize_config.algo method = mps.optimize_config.method procedure = mps.optimize_config.procedure inverse = mps.optimize_config.inverse nroots = mps.optimize_config.nroots assert method in ["2site", "1site"] logger.info(f"optimization method: {method}") logger.info(f"e_rtol: {mps.optimize_config.e_rtol}") logger.info(f"e_atol: {mps.optimize_config.e_atol}") if USE_GPU: oe_backend = "cupy" else: oe_backend = "numpy" # ensure that mps is left or right-canonical # TODO: start from a mix-canonical MPS if mps.is_left_canon: mps.ensure_right_canon() env = "R" else: mps.ensure_left_canon() env = "L" # in state-averged calculation, contains C of each state for better initial # guess averaged_ms = None # the index of active site of the returned mps res_mps_idx = None # target eigenstate close to omega with (H-omega)^2 # construct the environment matrix if omega is not None: identity = Mpo.identity(mpo.model) mpo = mpo.add(identity.scale(-omega)) environ = Environ(mps, [mpo, mpo], env) else: environ = Environ(mps, mpo, env) macro_iteration_result = [] converged = False for isweep, (mmax, percent) in enumerate(procedure): logger.debug(f"isweep: {isweep}") logger.debug(f"mmax, percent: {mmax}, {percent}") logger.debug(f"{mps}") micro_iteration_result = [] for imps in mps.iter_idx_list(full=True): if method == "2site" and \ ((mps.to_right and imps == mps.site_num-1) or ((not mps.to_right) and imps == 0)): break if mps.to_right: lmethod, rmethod = "System", "Enviro" else: lmethod, rmethod = "Enviro", "System" if method == "1site": lidx = imps - 1 cidx = [imps] ridx = imps + 1 elif method == "2site": if mps.to_right: lidx = imps - 1 cidx = [imps, imps + 1] ridx = imps + 2 else: lidx = imps - 2 cidx = [imps - 1, imps] # center site ridx = imps + 1 else: assert False logger.debug(f"optimize site: {cidx}") if omega is None: operator = mpo else: operator = [mpo, mpo] ltensor = environ.GetLR("L", lidx, mps, operator, itensor=None, method=lmethod) rtensor = environ.GetLR("R", ridx, mps, operator, itensor=None, method=rmethod) # get the quantum number pattern qnbigl, qnbigr, qnmat = mps._get_big_qn(cidx) cshape = qnmat.shape nonzeros = np.sum(qnmat == mps.qntot) logger.debug(f"Hmat dim: {nonzeros}") # center mo cmo = [asxp(mpo[idx]) for idx in cidx] if qnmat.size > 1000 and algo != "direct": # iterative algorithm # diagonal elements of H if omega is None: tmp_ltensor = xp.einsum("aba -> ba", ltensor) tmp_cmo0 = xp.einsum("abbc -> abc", cmo[0]) tmp_rtensor = xp.einsum("aba -> ba", rtensor) if method == "1site": # S-a c f-S # O-b-O-g-O # S-a c f-S path = [([0, 1], "ba, bcg -> acg"), ([1, 0], "acg, gf -> acf")] hdiag = multi_tensor_contract( path, tmp_ltensor, tmp_cmo0, tmp_rtensor)[(qnmat == mps.qntot)] else: # S-a c d f-S # O-b-O-e-O-g-O # S-a c d f-S tmp_cmo1 = xp.einsum("abbc -> abc", cmo[1]) path = [ ([0, 1], "ba, bce -> ace"), ([0, 1], "edg, gf -> edf"), ([0, 1], "ace, edf -> acdf"), ] hdiag = multi_tensor_contract( path, tmp_ltensor, tmp_cmo0, tmp_cmo1, tmp_rtensor)[(qnmat == mps.qntot)] else: if method == "1site": # S-a d h-S # O-b-O-f-O # | e | # O-c-O-g-O # S-a d h-S hdiag = oe.contract( "abca, bdef, cedg, hfgh -> adh", ltensor, cmo[0], cmo[0], rtensor, backend=oe_backend)[(qnmat == mps.qntot)] else: # S-a d h l-S # O-b-O-f-O-j-O # | e i | # O-c-O-g-O-k-O # S-a d h l-S hdiag = oe.contract( "abca, bdef, cedg, fhij, gihk, ljkl -> adhl", ltensor, cmo[0], cmo[0], cmo[1], cmo[1], rtensor, backend=oe_backend)[(qnmat == mps.qntot)] hdiag = asnumpy(hdiag * inverse) # initial guess if method == "1site": # initial guess b-S-c # a if nroots == 1: cguess = [asnumpy(mps[cidx[0]])[qnmat == mps.qntot]] else: cguess = [] if averaged_ms is not None: for ms in averaged_ms: cguess.append(asnumpy(ms)[qnmat == mps.qntot]) else: # initial guess b-S-c-S-e # a d if nroots == 1: cguess = [ asnumpy( tensordot(mps[cidx[0]], mps[cidx[1]], axes=1)[qnmat == mps.qntot]) ] else: cguess = [] if averaged_ms is not None: for ms in averaged_ms: if mps.to_right: cguess.append( asnumpy( tensordot( ms, mps[cidx[1]], axes=1)[qnmat == mps.qntot])) else: cguess.append( asnumpy( tensordot( mps[cidx[0]], ms, axes=1)[qnmat == mps.qntot])) if omega is not None: if method == "1site": # S-a e j-S # O-b-O-g-O # | f | # O-c-O-i-O # S-d h k-S expr = oe.contract_expression( "abcd, befg, cfhi, jgik, aej -> dhk", ltensor, cmo[0], cmo[0], rtensor, cshape, constants=[0, 1, 2, 3]) else: # S-a e j o-S # O-b-O-g-O-l-O # | f k | # O-c-O-i-O-n-O # S-d h m p-S expr = oe.contract_expression( "abcd, befg, cfhi, gjkl, ikmn, olnp, aejo -> dhmp", ltensor, cmo[0], cmo[0], cmo[1], cmo[1], rtensor, cshape, constants=[0, 1, 2, 3, 4, 5]) count = 0 def hop(x): nonlocal count count += 1 clist = [] if x.ndim == 1: clist.append(x) else: for icol in range(x.shape[1]): clist.append(x[:, icol]) res = [] for c in clist: # convert c to initial structure according to qn pattern cstruct = asxp(cvec2cmat(cshape, c, qnmat, mps.qntot)) if omega is None: if method == "1site": # S-a l-S # d # O-b-O-f-O # e # S-c k-S path = [ ([0, 1], "abc, adl -> bcdl"), ([2, 0], "bcdl, bdef -> clef"), ([1, 0], "clef, lfk -> cek"), ] cout = multi_tensor_contract( path, ltensor, cstruct, cmo[0], rtensor) else: # S-a l-S # d g # O-b-O-f-O-j-O # e h # S-c k-S path = [ ([0, 1], "abc, adgl -> bcdgl"), ([3, 0], "bcdgl, bdef -> cglef"), ([2, 0], "cglef, fghj -> clehj"), ([1, 0], "clehj, ljk -> cehk"), ] cout = multi_tensor_contract( path, ltensor, cstruct, cmo[0], cmo[1], rtensor, ) else: cout = expr(cstruct, backend=oe_backend) # convert structure c to 1d according to qn res.append(asnumpy(cout)[qnmat == mps.qntot]) if len(res) == 1: return inverse * res[0] else: return inverse * np.stack(res, axis=1) if len(cguess) < nroots: cguess.extend([ np.random.random([nonzeros]) - 0.5 for i in range(len(cguess), nroots) ]) if algo == "davidson": precond = lambda x, e, *args: x / (hdiag - e + 1e-4) e, c = davidson(hop, cguess, precond, max_cycle=100, nroots=nroots, max_memory=64000) # if one root, davidson return e as np.float #elif algo == "arpack": # # scipy arpack solver : much slower than pyscf/davidson # A = scipy.sparse.linalg.LinearOperator((nonzeros,nonzeros), matvec=hop) # e, c = scipy.sparse.linalg.eigsh(A, k=nroots, which="SA", v0=cguess) # # scipy return numpy.array # if nroots == 1: # e = e[0] #elif algo == "lobpcg": # precond = lambda x: scipy.sparse.diags(1/(hdiag+1e-4)) @ x # A = scipy.sparse.linalg.LinearOperator((nonzeros,nonzeros), # matvec=hop, matmat=hop) # M = scipy.sparse.linalg.LinearOperator((nonzeros,nonzeros), # matvec=precond, matmat=hop) # e, c = scipy.sparse.linalg.lobpcg(A, np.array(cguess).T, # M=M, largest=False) elif algo == "primme": precond = lambda x: scipy.sparse.diags(1 / (hdiag + 1e-4)) @ x A = scipy.sparse.linalg.LinearOperator( (nonzeros, nonzeros), matvec=hop, matmat=hop) M = scipy.sparse.linalg.LinearOperator( (nonzeros, nonzeros), matvec=precond, matmat=hop) e, c = primme.eigsh(A, k=min(nroots, nonzeros), which="SA", v0=np.array(cguess).T, OPinv=M, method="PRIMME_DYNAMIC", tol=1e-6) else: assert False logger.debug(f"use {algo}, HC hops: {count}") else: logger.debug(f"use direct eigensolver") # direct algorithm if omega is None: if method == "1site": # S-a l-S # d # O-b-O-f-O # e # S-c k-S ham = oe.contract("abc,bdef,lfk->adlcek", ltensor, cmo[0], rtensor, backend=oe_backend) ham = ham[:, :, :, qnmat == mps.qntot][ qnmat == mps.qntot, :] * inverse else: # S-a l-S # d g # O-b-O-f-O-j-O # e h # S-c k-S ham = oe.contract("abc,bdef,fghj,ljk->adglcehk", ltensor, cmo[0], cmo[1], rtensor) ham = ham[:, :, :, :, qnmat == mps.qntot][ qnmat == mps.qntot, :] * inverse else: if method == "1site": # S-a e j-S # O-b-O-g-O # | f | # O-c-O-i-O # S-d h k-S ham = oe.contract("abcd, befg, cfhi, jgik -> aejdhk", ltensor, cmo[0], cmo[0], rtensor) ham = ham[:, :, :, qnmat == mps.qntot][ qnmat == mps.qntot, :] * inverse else: # S-a e j o-S # O-b-O-g-O-l-O # | f k | # O-c-O-i-O-n-O # S-d h m p-S ham = oe.contract( "abcd, befg, cfhi, gjkl, ikmn, olnp -> aejodhmp", ltensor, cmo[0], cmo[0], cmo[1], cmo[1], rtensor) ham = ham[:, :, :, :, qnmat == mps.qntot][ qnmat == mps.qntot, :] * inverse w, v = scipy.linalg.eigh(asnumpy(ham)) if nroots == 1: e = w[0] c = v[:, 0] else: e = w[:nroots] c = [ v[:, iroot] for iroot in range(min(nroots, v.shape[1])) ] # if multi roots, both davidson and primme return np.ndarray if nroots > 1: e = e.tolist() logger.debug(f"energy: {e}") micro_iteration_result.append(e) cstruct = cvec2cmat(cshape, c, qnmat, mps.qntot, nroots=nroots) # store the "optimal" mps (usually in the middle of each sweep) if res_mps_idx is not None and res_mps_idx == imps: if nroots == 1: res_mps = mps.copy() res_mps._update_mps(cstruct, cidx, qnbigl, qnbigr, mmax, percent) else: res_mps = [mps.copy() for i in range(len(cstruct))] for iroot in range(len(cstruct)): res_mps[iroot]._update_mps(cstruct[iroot], cidx, qnbigl, qnbigr, mmax, percent) averaged_ms = mps._update_mps(cstruct, cidx, qnbigl, qnbigr, mmax, percent) mps._switch_direction() res_mps_idx = micro_iteration_result.index(min(micro_iteration_result)) macro_iteration_result.append(micro_iteration_result[res_mps_idx]) # check if convergence if isweep > 0 and percent == 0: v1, v2 = sorted(macro_iteration_result)[:2] if np.allclose(v1, v2, rtol=mps.optimize_config.e_rtol, atol=mps.optimize_config.e_atol): converged = True break logger.debug( f"{isweep+1} sweeps are finished, lowest energy = {sorted(macro_iteration_result)[0]}" ) if converged: logger.info("DMRG is converged!") else: logger.warning("DMRG is not converged! Please increase the procedure!") logger.info( f"The lowest two energies: {sorted(macro_iteration_result)[:2]}.") # remove the redundant basis near the edge if nroots == 1: res_mps = res_mps.normalize().ensure_left_canon().canonicalise() logger.info(f"{res_mps}") else: res_mps = [ mp.normalize().ensure_left_canon().canonicalise() for mp in res_mps ] logger.info(f"{res_mps[0]}") return macro_iteration_result, res_mps
def mpdm_norm(self): # the trace i = Mpo.identity(self.mol_list) return self.expectation(i, i)
def _expectation_conj(self): i = Mpo.identity(self.mol_list) i.scale(1 / self.mpdm_norm(), inplace=True) return i