def test_gridsearch_sklearn(): metric = numpy.random.choice([OptimalAMS(), RocAuc(), LogLoss()]) scorer = ClassificationFoldingScorer(metric) maximization = True if isinstance(metric, LogLoss): maximization = False grid_param = OrderedDict({ "n_estimators": [10, 20], "learning_rate": [0.1, 0.05], 'features': [['column0', 'column1'], ['column0', 'column1', 'column2']] }) generator = RegressionParameterOptimizer(grid_param, n_evaluations=4, maximize=maximization) grid = GridOptimalSearchCV(SklearnClassifier(clf=AdaBoostClassifier()), generator, scorer, parallel_profile='threads-3') _ = check_grid(grid, False, False, False, use_weights=True) classifier = check_grid(grid, False, False, False, use_weights=False) # Check parameters of best fitted classifier assert 2 <= len(classifier.features) <= 3, 'Features were not set' params = classifier.get_params() for key in grid_param: if key in params: assert params[key] == grid.generator.best_params_[key] else: assert params['clf__' + key] == grid.generator.best_params_[key]
def test_gridsearch_metrics_threads(n_threads=3): X, y, sample_weight = generate_classification_data(n_classes=2, distance=0.7) param_grid = OrderedDict({'reg_param': numpy.linspace(0, 1, 20)}) from itertools import cycle optimizers = cycle([ RegressionParameterOptimizer(param_grid=param_grid, n_evaluations=4, start_evaluations=2), SubgridParameterOptimizer(param_grid=param_grid, n_evaluations=4), RandomParameterOptimizer(param_grid=param_grid, n_evaluations=4), ]) for metric in [RocAuc(), OptimalAMS(), OptimalSignificance(), log_loss]: scorer = FoldingScorer(metric) clf = SklearnClassifier(QDA()) grid = GridOptimalSearchCV( estimator=clf, params_generator=next(optimizers), scorer=scorer, parallel_profile='threads-{}'.format(n_threads)) grid.fit(X, y) print(grid.params_generator.best_score_) print(grid.params_generator.best_params_) grid.params_generator.print_results()
def test_gridsearch_sklearn_regression(): scorer = RegressionFoldingScorer(mean_squared_error) grid_param = OrderedDict({ "n_estimators": [10, 20], "learning_rate": [0.1, 0.05], 'features': [['column0', 'column1'], ['column0', 'column1', 'column2']] }) generator = RegressionParameterOptimizer(grid_param, n_evaluations=4) grid = GridOptimalSearchCV(SklearnRegressor(clf=AdaBoostRegressor()), generator, scorer) # parallel_profile='threads-3') _ = check_grid(grid, False, False, False, use_weights=True, classification=False) regressor = check_grid(grid, False, False, False, use_weights=False, classification=False) # Check parameters of best fitted classifier assert 2 <= len(regressor.features) <= 3, 'Features were not set' params = regressor.get_params() for key in grid_param: if key in params: assert params[key] == grid.generator.best_params_[key] else: assert params['clf__' + key] == grid.generator.best_params_[key]
def test_gridsearch_threads(n_threads=3): scorer = FoldingScorer(numpy.random.choice([OptimalAMS(), RocAuc()])) grid_param = OrderedDict({ "n_estimators": [10, 20], "learning_rate": [0.1, 0.05], 'features': [['column0', 'column1'], ['column0', 'column1', 'column2']] }) generator = RegressionParameterOptimizer(grid_param, n_evaluations=4) base = SklearnClassifier(clf=AdaBoostClassifier()) grid = GridOptimalSearchCV(base, generator, scorer, parallel_profile='threads-{}'.format(n_threads)) X, y, sample_weight = generate_classification_data() grid.fit(X, y, sample_weight=sample_weight)
def grid_sklearn(score_function): grid_param = OrderedDict({ "n_estimators": [10, 20], "learning_rate": [0.1, 0.05], 'features': [['column0', 'column1'], ['column0', 'column1', 'column2']] }) generator = RegressionParameterOptimizer(grid_param) scorer = FoldingScorer(score_function) grid = GridOptimalSearchCV(SklearnClassifier(clf=AdaBoostClassifier()), generator, scorer) cl = check_grid(grid, False, False, False) assert 1 <= len(cl.features) <= 3 params = cl.get_params() for key in grid_param: if key in params: assert params[key] == grid.generator.best_params_[key] else: assert params['clf__' + key] == grid.generator.best_params_[key]