class Agent: def __init__(self, env, env_w, device, config: Config): self.env = env self.env_w = env_w self.device = device self.cfg = config self.n_actions = config.n_actions self.policy_net = config.policy_net self.target_net = config.target_net self.target_net.load_state_dict(self.policy_net.state_dict()) self.target_net.eval() self.optimizer = optim.RMSprop(self.policy_net.parameters()) self.memory = ReplayMemory(10000) self.steps_done = 0 self.episode_durations = [] def select_action(self, state): self.steps_done += 1 sample = random.random() eps_threshold = self.cfg.EPS_END + (self.cfg.EPS_START - self.cfg.EPS_END) * \ math.exp(-1. * self.steps_done / self.cfg.EPS_DECAY) if sample < eps_threshold: with torch.no_grad(): # t.max(1) will return largest column value of each row. # second column on max result is index of where max element was # found, so we pick action with the larger expected reward. # action = self.policy_net(state).max(1)[1] action = self.policy_net(state).argmax() % self.n_actions else: action = random.randrange(self.n_actions) return torch.tensor([[action]], device=self.device, dtype=torch.long) def optimize_model(self): if len(self.memory) < self.cfg.BATCH_SIZE: return transitions = self.memory.sample(self.cfg.BATCH_SIZE) # Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for # detailed explanation). This converts batch-array of Transitions # to Transition of batch-arrays. batch = Transition(*zip(*transitions)) # Compute a mask of non-final states and concatenate the batch elements # (a final state would've been the one after which simulation ended) non_final_mask = torch.tensor(tuple(map(lambda s: s is not None, batch.next_state)), device=self.device, dtype=torch.bool) non_final_next_states = torch.cat([s for s in batch.next_state if s is not None]) state_batch = torch.cat(batch.state) action_batch = torch.cat(batch.action) reward_batch = torch.cat(batch.reward) # Compute Q(s_t, a) - the model computes Q(s_t), then we select the # columns of actions taken. These are the actions which would've been taken # for each batch state according to policy_net state_action_values = self.policy_net(state_batch).gather(1, action_batch) # Compute V(s_{t+1}) for all next states. # Expected values of actions for non_final_next_states are computed based # on the "older" target_net; selecting their best reward with max(1)[0]. # This is merged based on the mask, such that we'll have either the expected # state value or 0 in case the state was final. next_state_values = torch.zeros(self.cfg.BATCH_SIZE, device=self.device) next_state_values[non_final_mask] = self.target_net(non_final_next_states).max(1)[0].detach() # Compute the expected Q values expected_state_action_values = (next_state_values * self.cfg.GAMMA) + reward_batch # Compute Huber loss loss = F.smooth_l1_loss(state_action_values, expected_state_action_values.unsqueeze(1)) # Optimize the model self.optimizer.zero_grad() loss.backward() for param in self.policy_net.parameters(): param.grad.data.clamp_(-1, 1) self.optimizer.step() def step(self, i_episode): # Initialize the environment and state self.env.reset() last_screen = self.env_w.get_screen() current_screen = self.env_w.get_screen() state = current_screen - last_screen for t in count(): # Select and perform an action action = self.select_action(state) obs, reward, done, obs_ = self.env.step(action.item()) # reward = torch.tensor([reward], device=self.device) reward = torch.tensor([-abs(obs[2])], device=self.device, dtype=torch.float) # Observe new state last_screen = current_screen current_screen = self.env_w.get_screen() if not done: next_state = current_screen - last_screen else: next_state = None # Store the transition in memory self.memory.push(state, action, next_state, reward) # Move to the next state state = next_state # Perform one step of the optimization (on the target network) self.optimize_model() if done: self.episode_durations.append(t + 1) self.env_w.plot_durations(self.episode_durations) break # Update the target network, copying all weights and biases in DQN if i_episode % self.cfg.TARGET_UPDATE == 0: self.target_net.load_state_dict(self.policy_net.state_dict())
class DQN: def __init__(self, env, hparams): self.hparams = hparams self.env = env self.n = env.action_space.n self.Q = DCNN(4, self.n) self.T = DCNN(4, self.n) self.T.load_state_dict(self.Q.state_dict()) self.T.eval() self.memory = ReplayMemory(hparams.memory_size) self.steps = 0 self.state = env.reset() self.optimizer = torch.optim.RMSprop(self.Q.parameters(), lr=hparams.lr, momentum=hparams.momentum) self.n_episodes = 0 @torch.no_grad() def select_action(self): hparams = self.hparams start = hparams.eps_start end = hparams.eps_end time = hparams.eps_time steps = self.steps self.steps += 1 if steps < time: epsilon = start - (start - end) * steps / time else: epsilon = end sample = random.random() if sample > epsilon: return self.Q(s2t(self.state).to(device)).max(1)[1].item() else: return self.env.action_space.sample() def sample_step(self, fs_min=2, fs_max=6): """repeats a single action between fs_min and fs_max (inclusive) times""" fs = random.randint(fs_min, fs_max) action = self.select_action() r = 0 for _ in range(fs): new_state, reward, done, _ = self.env.step(action) self.memory.push(self.state, action, new_state if not done else None, reward) r += reward self.state = self.env.reset() if done else new_state if done: self.n_episodes += 1 return r def optimize(self): hparams = self.hparams transitions = self.memory.sample(hparams.batch_size) batch = Transition(*zip(*transitions)) states = torch.cat([s2t(state) for state in batch.state]).to(device) actions = torch.tensor(batch.action).unsqueeze(1).to(device) target_values = torch.tensor( batch.reward).unsqueeze(1).to(device).float() non_terminal_next_states = torch.cat([ s2t(state) for state in batch.next_state if state is not None ]).to(device) non_terminal_mask = torch.tensor([ state is not None for state in batch.next_state ]).to(device).unsqueeze(1) values = self.Q(states).gather(1, actions).float() target_values[non_terminal_mask] += hparams.gamma * self.T( non_terminal_next_states).detach().max(1)[0].float() #print(values.dtype,target_values.dtype) loss = F.smooth_l1_loss(values, target_values) self.optimizer.zero_grad() loss.backward() for param in self.Q.parameters(): param.grad.data.clamp_(-1, 1) # maybe try sign_? self.optimizer.step() return loss
def train_dqn(env, num_steps, *, replay_size, batch_size, exploration, gamma, train_freq=1, print_freq=100, target_network_update_freq=500, t_learning_start=1000): """ DQN algorithm. Compared to previous training procedures, we will train for a given number of time-steps rather than a given number of episodes. The number of time-steps will be in the range of millions, which still results in many episodes being executed. Args: - env: The openai Gym environment - num_steps: Total number of steps to be used for training - replay_size: Maximum size of the ReplayMemory - batch_size: Number of experiences in a batch - exploration: a ExponentialSchedule - gamma: The discount factor Returns: (saved_models, returns) - saved_models: Dictionary whose values are trained DQN models - returns: Numpy array containing the return of each training episode - lengths: Numpy array containing the length of each training episode - losses: Numpy array containing the loss of each training batch """ # check that environment states are compatible with our DQN representation assert (isinstance(env.observation_space, gym.spaces.Box) and len(env.observation_space.shape) == 1) # get the state_size from the environment state_size = env.observation_space.shape[0] # initialize the DQN and DQN-target models dqn_model = DQN(state_size, env.action_space.n) dqn_target = DQN.custom_load(dqn_model.custom_dump()) # initialize the optimizer optimizer = torch.optim.Adam(dqn_model.parameters(), lr=5e-4) # initialize the replay memory memory = ReplayMemory(replay_size, state_size) # initiate lists to store returns, lengths and losses rewards = [] returns = [] lengths = [] losses = [] last_100_returns = deque(maxlen=100) last_100_lengths = deque(maxlen=100) # initiate structures to store the models at different stages of training saved_models = {} i_episode = 0 t_episode = 0 state = env.reset() # iterate for a total of `num_steps` steps for t_total in range(num_steps): # use t_total to indicate the time-step from the beginning of training if t_total >= t_learning_start: eps = exploration.value(t_total - t_learning_start) else: eps = 1.0 action = select_action_epsilon_greedy(dqn_model, state, eps, env) next_state, reward, done, _ = env.step(action) memory.add(state, action, reward, next_state, done) rewards.append(reward) state = next_state if t_total >= t_learning_start and t_total % train_freq == 0: batch = memory.sample(batch_size) loss = train_dqn_batch(optimizer, batch, dqn_model, dqn_target, gamma) losses.append(loss) # update target network if t_total >= t_learning_start and t_total % target_network_update_freq == 0: dqn_target.load_state_dict(dqn_model.state_dict()) if done: # Calculate episode returns G = 0 for i in range(len(rewards)): G += rewards[i] * pow(gamma, i) # Collect results lengths.append(t_episode + 1) returns.append(G) last_100_returns.append(G) last_100_lengths.append(t_episode + 1) if i_episode % print_freq == 0: logger.record_tabular("time step", t_total) logger.record_tabular("episodes", i_episode) logger.record_tabular("step", t_episode + 1) logger.record_tabular("return", G) logger.record_tabular("mean reward", np.mean(last_100_returns)) logger.record_tabular("mean length", np.mean(last_100_lengths)) logger.record_tabular("% time spent exploring", int(100 * eps)) logger.dump_tabular() # End of episode so reset time, reset rewards list t_episode = 0 rewards = [] # Environment terminated so reset it state = env.reset() # Increment the episode index i_episode += 1 else: t_episode += 1 return ( dqn_model, np.array(returns), np.array(lengths), np.array(losses), )
class Learner(object): def __init__(self, params, param_set_id, status_dict, shared_state, remote_mem): self.params = params self.param_set_id = param_set_id self.status_dict = status_dict self.shared_state = shared_state self.remote_mem = remote_mem gpu = 0 torch.cuda.set_device(gpu) ep = params['env'] ap = params['actor'] lp = params['learner'] rmp = params["replay_memory"] model_formula = f'model.{lp["model"]}(self.state_shape, self.action_dim).to(self.device)' optimizer_formula = lp["optimizer"].format('self.Q.parameters()') self.conn = psycopg2.connect(params["db"]["connection_string"]) self.conn.autocommit = True self.cur = self.conn.cursor() self.device = torch.device("cuda:{}".format(gpu) if 0 <= gpu and torch.cuda.is_available() else "cpu") self.state_shape = ep['state_shape'] self.batch_size = lp['replay_sample_size'] self.action_dim = ep['action_dim'] self.q_target_sync_freq = lp['q_target_sync_freq'] self.num_q_updates = 0 self.take_offsets = (torch.arange(self.batch_size) * self.action_dim).to(self.device) self.Q = eval(model_formula) self.Q_target = eval(model_formula) # Target Q network which is slow moving replica of self.Q self.optimizer = eval(optimizer_formula) self.replay_memory = ReplayMemory(rmp) self.train_num = 0 self.model_file_name = lp['load_saved_state'] if self.model_file_name and os.path.isfile(self.model_file_name): print(f'Loading {self.model_file_name}') saved_state = torch.load(self.model_file_name) self.Q.load_state_dict(saved_state['module']) self.optimizer.load_state_dict(saved_state['optimizer']) self.train_num = saved_state['train_num'] self.shared_state['Q_state_dict'] = self.state_dict_to_cpu(self.Q.state_dict()), self.state_dict_to_cpu( self.Q_target.state_dict()) self.status_dict['Q_state_dict_stored'] = True self.last_Q_state_dict_id = 1 self.status_dict['Q_state_dict_id'] = self.last_Q_state_dict_id self.status_dict['train_num'] = self.train_num self.gamma_n = params['actor']['gamma']**params['actor']['num_steps'] def state_dict_to_cpu(self, state_dict): d = OrderedDict() for k, v in state_dict.items(): d[k] = v.cpu() return d def add_experience_to_replay_mem(self): while self.remote_mem.qsize(): priorities, batch = self.remote_mem.get() self.replay_memory.add(priorities, batch) def compute_loss_and_priorities(self, batch_size): indices, n_step_transition_batch, before_priorities = self.replay_memory.sample(batch_size) s = n_step_transition_batch[0].to(self.device) a = n_step_transition_batch[1].to(self.device) r = n_step_transition_batch[2].to(self.device) a_latest = n_step_transition_batch[3].to(self.device) s_latest = n_step_transition_batch[4].to(self.device) terminal = n_step_transition_batch[5].to(self.device) q = self.Q(s) q_a = q.take(self.take_offsets + a).squeeze() with torch.no_grad(): self.Q_target.eval() Gt = r + (1.0 - terminal) * self.gamma_n * self.Q_target(s_latest).take(self.take_offsets + a_latest).squeeze() td_error = Gt - q_a loss = F.smooth_l1_loss(q_a, Gt) # loss = td_error**2 / 2 # Compute the new priorities of the experience after_priorities = td_error.data.abs().cpu().numpy() self.replay_memory.set_priorities(indices, after_priorities) return loss, q, before_priorities, after_priorities, indices def update_Q(self, loss): self.optimizer.zero_grad() loss.backward() self.optimizer.step() self.num_q_updates += 1 if self.num_q_updates % self.q_target_sync_freq == 0: self.Q_target.load_state_dict(self.Q.state_dict()) print(f'Target Q synchronized.') return True else: return False def learn(self): t = tables.LearnerData() record_type = t.get_record_type() record_insert = t.get_insert() cur = self.cur param_set_id = self.param_set_id now = datetime.datetime.now step_num = 0 target_sync_num = 0 send_param_num = 0 min_replay_mem_size = self.params['learner']["min_replay_mem_size"] print('learner waiting for replay memory.') while self.replay_memory.size() <= min_replay_mem_size: self.add_experience_to_replay_mem() time.sleep(0.01) step_num = 0 print('learner start') while not self.status_dict['quit']: self.add_experience_to_replay_mem() # 4. Sample a prioritized batch of transitions # 5. & 7. Apply double-Q learning rule, compute loss and experience priorities # 8. Update priorities loss, q, before_priorities, after_priorities, indices = self.compute_loss_and_priorities(self.batch_size) if step_num % 10 == 0: print(f'loss : {loss}') #print("\nLearner: step_num=", step_num, "loss:", loss, "RPM.size:", self.replay_memory.size(), end='\r') # 6. Update parameters of the Q network(s) if self.update_Q(loss): target_sync_num += 1 if step_num % 5 == 0: self.shared_state['Q_state_dict'] = self.state_dict_to_cpu(self.Q.state_dict()), self.state_dict_to_cpu( self.Q_target.state_dict()) self.last_Q_state_dict_id += 1 self.status_dict['Q_state_dict_id'] = self.last_Q_state_dict_id print('Send params to actors.') send_param_num += 1 # 9. Periodically remove old experience from replay memory step_num += 1 self.train_num += 1 self.status_dict['train_num'] = self.train_num # DBへデータ登録 r = record_type(param_set_id, now(), self.train_num, step_num, loss.item(), q[0].tolist(), before_priorities.tolist(), after_priorities.tolist(), indices.tolist(), target_sync_num, send_param_num) record_insert(cur, r) print('learner end') state_dict = {'module': self.Q.state_dict(), 'optimizer': self.optimizer.state_dict(), 'train_num': self.train_num} torch.save(state_dict, self.model_file_name)
class DDQN_separated_net(Agent_segment): def __init__(self, epsilon=0.3, memory_size=300, batch_size=16, model=navigation_model, target_update_interval=1, tau=0.005): super(DDQN_separated_net, self).__init__(epsilon=epsilon, random_can_stop=False) # Memory self.memory = ReplayMemory(memory_size) # Batch size when learning self.batch_size = batch_size # number of time steps before an update of the delayed target Q network self.target_update_interval = target_update_interval # soft update weight of the delayed Q network self.tau = tau def learned_act(self, s, pred_oracle=True, online=False): if online: if pred_oracle: return torch.cat([self.model(s), oracle(s).unsqueeze(1)], 1) with torch.no_grad(): if pred_oracle: return torch.cat([self.target_model(s), oracle(s).unsqueeze(1)], 1) # to do without oracle def reinforce(self, s_, a_, n_s_, r_, game_over_, env_steps_): # Two steps: first memorize the states, second learn from the pool self.memory.remember(s_, a_, n_s_, r_, game_over_) transitions = self.memory.sample(self.batch_size) batch = Transition(*zip(*transitions)) # Compute a mask of non-final states and concatenate the batch elements # (a final state would've been the one after which simulation ended) # non_final_mask = torch.tensor(torch.cat(batch.game_over), device=device)==False non_final_mask = torch.cat(batch.game_over) == False non_final_next_states = torch.cat(batch.next_state)[non_final_mask] state_batch = torch.cat(batch.state) action_batch = torch.cat(batch.action).view(-1, 2) reward_batch = torch.cat(batch.reward) # non_final_next_states = torch.cat(batch.next_state)[non_final_index] # print(state_batch.shape) state_values = self.learned_act(state_batch, online=True) state_action_values = torch.cat( [s[a[0].item(), a[1].item()].unsqueeze(0) for s, a in zip(state_values, batch.action)]) next_state_values = torch.zeros(self.batch_size, device=device) if len(non_final_next_states) > 0: with torch.no_grad(): argmax_online = (self.learned_act(non_final_next_states, online=True)).view(non_final_next_states.shape[0],-1).argmax(1) # print(torch.tensor(range(self.batch_size), device=device)[non_final_mask]) # print(self.learned_act(non_final_next_states, online=False).view(-1, 2*SEGMENT_LENGTH).shape) next_state_values[non_final_mask] = \ self.learned_act(non_final_next_states, online=False).view(non_final_next_states.shape[0], -1)[ range(len(non_final_next_states)), argmax_online] expected_state_action_values = next_state_values + reward_batch loss = F.smooth_l1_loss(state_action_values[non_final_mask], expected_state_action_values[non_final_mask]) # .unsqueeze(1)) # loss = F.mse_loss(state_action_values[non_final_mask], expected_state_action_values[non_final_mask]) # Optimize the model self.optimizer.zero_grad() loss.backward() for param in self.model.parameters(): # HINT: Clip the target to avoid exploiding gradients.. -- clipping is a bit tighter param.grad.data.clamp_(-1e-6, 1e-6) self.optimizer.step() if env_steps_ % self.target_update_interval == 0: soft_update(self.target_model, self.model, self.tau) return float(loss) def save_model(self, model_path='model.pickle'): try: torch.save(self.model, model_path) except: pass def load_model(self, model_path='model.pickle', local=True): if local: self.model = navigation_model() self.target_model = navigation_model() hard_update(self.target_model, self.model) else: self.model = torch.load('model.pickle') self.target_model = torch.load('model.pickle') if torch.cuda.is_available(): print('Using GPU') self.model.cuda() self.target_model.cuda() else: print('Using CPU') self.optimizer = optim.RMSprop(self.model.parameters(), lr=1e-5)