def test_order(): df = pd.DataFrame( { 'PRODUCT_ID' : 1 , 'DATE' : pd.date_range('1/1/2011',periods=5, freq='D'), 'SALES' : [2,3,4,1,1], }) config = {'replenishment': {'quantiles': 70, 'replenishment': {'model': 'replenishment'}, 'prediction': {'model': 'simple_prediction', 'window': 0}, 'input_file': 'temp.csv'}} result = ord.order(df,config) npt.assert_array_equal(df['ORDER'], [3,4,5,1,1])
parser = argparse.ArgumentParser() parser.add_argument("-y", "--yaml", help="yaml inputfile to test", type=str) parser.add_argument("-d", "--orderday", help="date of order", type=str) parser.add_argument("-o", "--outputfile", help="name of outputfile", type=str) args = parser.parse_args() # parse config file rep_args = parse_yaml(args.yaml) test_file(rep_args, 'replenishment') start_time = time.time() ''' read in file ''' df = pd.read_csv(rep_args['replenishment']['input_file'],sep=';', parse_dates=['DATE']) orderday = datetime.datetime.strptime(args.orderday,'%Y-%m-%d') df = df[df['DATE']<=orderday] df = df.sort(['PRODUCT_ID','DATE']) df = df.reset_index() order_df = rep.order(df,rep_args) order_df = order_df[order_df['DATE']==orderday] end_time = time.time() print "--- %s seconds ---" % (end_time - start_time) order_df.to_csv(args.outputfile+'.csv', sep=';')