def reprocess_wfc3ir(parallel=False, cpu_count=0): """ Run reprocessing script to flatten IR backgrounds """ if parallel: # Might require light backend to avoid segfaults in multiprocessing import matplotlib as mpl mpl.rcParams['backend'] = 'agg' import glob import os # https://github.com/gbrammer/wfc3 try: from reprocess_wfc3 import reprocess_wfc3 except: try: from mywfc3 import reprocess_wfc3 except: print(""" Couldn\'t `import reprocess_wfc3`. Get it from https://github.com/gbrammer/reprocess_wfc3 """) return False # Fetch calibs in serial print('\ngrizli.pipeline.reprocess: Fetch calibrations...\n') files = glob.glob('*raw.fits') for file in files: reprocess_wfc3.fetch_calibs( file, ftpdir='https://hst-crds.stsci.edu/unchecked_get/references/hst/', verbose=False) # Make ramp diagnostic images if parallel: files = glob.glob('*raw.fits') reprocess_wfc3.show_ramps_parallel(files, cpu_count=cpu_count) # Reprocess all raw files files = glob.glob('*raw.fits') reprocess_wfc3.reprocess_parallel(files, cpu_count=cpu_count) else: files = glob.glob('*raw.fits') for file in files: if not os.path.exists(file.replace('raw.fits', 'ramp.png')): reprocess_wfc3.show_MultiAccum_reads(raw=file, stats_region=[[300, 700], [300, 700]]) for file in files: if not os.path.exists(file.replace('raw.fits', 'flt.fits')): reprocess_wfc3.make_IMA_FLT(raw=file, stats_region=[[300, 700], [300, 700]])
def reprocess_wfc3ir(parallel=False, cpu_count=0): """ Run reprocessing script to flatten IR backgrounds """ if parallel: # Might require light backend to avoid segfaults in multiprocessing import matplotlib as mpl mpl.rcParams['backend'] = 'agg' import glob import os # https://github.com/gbrammer/wfc3 try: from reprocess_wfc3 import reprocess_wfc3 except: try: from mywfc3 import reprocess_wfc3 except: print(""" Couldn\'t `import reprocess_wfc3`. Get it from https://github.com/gbrammer/reprocess_wfc3 """) return False # Fetch calibs in serial print('\ngrizli.pipeline.reprocess: Fetch calibrations...\n') files=glob.glob('*raw.fits') for file in files: reprocess_wfc3.fetch_calibs(file, ftpdir='https://hst-crds.stsci.edu/unchecked_get/references/hst/', verbose=False) # Make ramp diagnostic images if parallel: files=glob.glob('*raw.fits') reprocess_wfc3.show_ramps_parallel(files, cpu_count=cpu_count) # Reprocess all raw files files=glob.glob('*raw.fits') reprocess_wfc3.reprocess_parallel(files, cpu_count=cpu_count) else: files=glob.glob('*raw.fits') for file in files: if not os.path.exists(file.replace('raw.fits','ramp.png')): reprocess_wfc3.show_MultiAccum_reads(raw=file, stats_region=[[300,700], [300,700]]) for file in files: if not os.path.exists(file.replace('raw.fits','flt.fits')): reprocess_wfc3.make_IMA_FLT(raw=file, stats_region=[[300,700], [300,700]])
def inspect(root='grizli', force=False): """ Run the GUI inspection tool on the `ramp.png` images to flag problematic reads with high backgrounds and/or satellite trails. Click the right mouse button to flag a given read and go to the next object with the 'n' key. Type 'q' when done. Parameters ---------- root : str Rootname for the output inspection file: >>> root = 'grizli' >>> file = '{0}_inspect.fits'.format(root) Returns ------- Nothing returned. Makes the inspection file and runs the reprocessing. .. note:: If the script fails puking lots of Tk-related messages, be sure to run this script iin a fresh python session *before* importing `~matplotlib`. """ import os import glob import matplotlib matplotlib.use("TkAgg") ### This needs to be run first! #import mywfc3.reprocess_wfc3 from reprocess_wfc3 import reprocess_wfc3 import astropy.io.fits as pyfits import numpy as np files = glob.glob('*ramp.png') files.sort() # Run the GUI, 'q' to quit try: import mywfc3.inspect if os.path.exists('{0}_inspect.fits'.format(root)): if force: x = mywfc3.inspect.ImageClassifier(images=files, logfile='{0}_inspect'.format(root)) else: x = mywfc3.inspect.ImageClassifier(images=files, logfile='{0}_inspect'.format(root)) except: pass if not os.path.exists('{0}_inspect.fits'.format(root)): return True #im = pyfits.open('inspect_raw.info.fits') im = pyfits.open('{0}_inspect.fits'.format(root)) tab = im[1].data fl = im['FLAGGED'].data is_flagged = fl.sum(axis=1) > 0 sat_files = [file.replace('ramp.png', 'flt.fits') for file in tab['images'][is_flagged]] read_idx = np.arange(14, dtype=int)+1 idx = np.arange(fl.shape[0]) for i in idx[is_flagged]: pop_reads = list(read_idx[fl[i,:] > 0]) raw = tab['images'][i].replace('_ramp.png', '_raw.fits') ramp_file = tab['images'][i].replace('_ramp.png', '_ramp.dat') #sn_pop = mywfc3.inspect.check_background_SN(ramp_file=ramp_file, show=False) #pop_reads = np.cast[int](np.unique(np.hstack((pop_reads, sn_pop)))) #pop_reads = list(pop_reads) flt = raw.replace('_raw','_flt') if os.path.exists(flt): flt_im = pyfits.open(flt) if 'NPOP' in flt_im[0].header: if flt_im[0].header['NPOP'] > 0: print('Skip %s' %(flt)) continue print('Process %s %s' %(raw, pop_reads)) reprocess_wfc3.make_IMA_FLT(raw=raw, pop_reads=pop_reads, flatten_ramp=True) # Remove "killed" kill_files = [file.replace('ramp.png', 'flt.fits') for file in tab['images'][tab['kill'] > 0]] for file in kill_files: if os.path.exists(file): os.remove(file) return True
def reprocess_wfc3ir(parallel=False, cpu_count=0, clean_dark_refs=True): """ Run reprocessing script to flatten IR backgrounds """ if parallel: # Might require light backend to avoid segfaults in multiprocessing import matplotlib as mpl mpl.rcParams['backend'] = 'agg' import glob import os import astropy.io.fits as pyfits # https://github.com/gbrammer/wfc3 try: from reprocess_wfc3 import reprocess_wfc3 except: try: from mywfc3 import reprocess_wfc3 except: print(""" Couldn\'t `import reprocess_wfc3`. Get it from https://github.com/gbrammer/reprocess_wfc3 """) return False # Fetch calibs in serial print('\ngrizli.pipeline.reprocess: Fetch calibrations...\n') files = glob.glob('*raw.fits') for file in files: reprocess_wfc3.fetch_calibs(file, ftpdir='https://hst-crds.stsci.edu/unchecked_get/references/hst/', verbose=False) # Make ramp diagnostic images if parallel: files = glob.glob('*raw.fits') files.sort() reprocess_wfc3.show_ramps_parallel(files, cpu_count=cpu_count) # Reprocess all raw files files = glob.glob('*raw.fits') files.sort() reprocess_wfc3.reprocess_parallel(files, cpu_count=cpu_count) else: files = glob.glob('*raw.fits') files.sort() for file in files: if not os.path.exists(file.replace('raw.fits', 'ramp.png')): reprocess_wfc3.show_MultiAccum_reads(raw=file, stats_region=[[300, 700], [300, 700]]) for file in files: if not os.path.exists(file.replace('raw.fits', 'flt.fits')): reprocess_wfc3.make_IMA_FLT(raw=file, stats_region=[[300, 700], [300, 700]]) # Remove DRK reference files, which now proliferate if clean_dark_refs: files = glob.glob('*raw.fits') files.sort() for file in files: im = pyfits.open(file) dark_file = im[0].header['DARKFILE'].replace('iref$', '') dark_file = os.path.join(os.getenv('iref'), dark_file) im.close() if os.path.exists(dark_file): print('clean_dark: {0}'.format(dark_file)) os.remove(dark_file)