예제 #1
0
 def test_batch_splitting_doesnt_change_value(self):
     for num_batches in [1, 2, 4, 8]:
         mscore = util.mnist_score(
             tf.concat([real_digit()] * 4 + [fake_digit()] * 4, 0),
             num_batches=num_batches)
         with self.test_session():
             self.assertNear(1.649209, mscore.eval(), 1e-6)
예제 #2
0
    def test_deterministic(self):
        m_score = util.mnist_score(real_digit())
        with self.test_session():
            m_score1 = m_score.eval()
            m_score2 = m_score.eval()
        self.assertEqual(m_score1, m_score2)

        with self.test_session():
            m_score3 = m_score.eval()
        self.assertEqual(m_score1, m_score3)
예제 #3
0
def main(_, run_eval_loop=True):
    # Fetch real images.
    with tf.name_scope('inputs'):
        real_images, _, _ = data_provider.provide_data(
            'train', FLAGS.num_images_generated, FLAGS.dataset_dir)

    image_write_ops = None
    if FLAGS.eval_real_images:
        tf.summary.scalar(
            'MNIST_Classifier_score',
            util.mnist_score(real_images, FLAGS.classifier_filename))
    else:
        # In order for variables to load, use the same variable scope as in the
        # train job.
        with tf.variable_scope('Generator'):
            images = networks.unconditional_generator(tf.random_normal(
                [FLAGS.num_images_generated, FLAGS.noise_dims]),
                                                      is_training=False)
        tf.summary.scalar(
            'MNIST_Frechet_distance',
            util.mnist_frechet_distance(real_images, images,
                                        FLAGS.classifier_filename))
        tf.summary.scalar('MNIST_Classifier_score',
                          util.mnist_score(images, FLAGS.classifier_filename))
        if FLAGS.num_images_generated >= 100 and FLAGS.write_to_disk:
            reshaped_images = tfgan.eval.image_reshaper(images[:100, ...],
                                                        num_cols=10)
            uint8_images = data_provider.float_image_to_uint8(reshaped_images)
            image_write_ops = tf.write_file(
                '%s/%s' % (FLAGS.eval_dir, 'unconditional_gan.png'),
                tf.image.encode_png(uint8_images[0]))

    # For unit testing, use `run_eval_loop=False`.
    if not run_eval_loop: return
    tf.contrib.training.evaluate_repeatedly(
        FLAGS.checkpoint_dir,
        hooks=[
            tf.contrib.training.SummaryAtEndHook(FLAGS.eval_dir),
            tf.contrib.training.StopAfterNEvalsHook(1)
        ],
        eval_ops=image_write_ops,
        max_number_of_evaluations=FLAGS.max_number_of_evaluations)
예제 #4
0
def main(_, run_eval_loop=True):
    with tf.name_scope('inputs'):
        noise, one_hot_labels = _get_generator_inputs(
            FLAGS.num_images_per_class, NUM_CLASSES, FLAGS.noise_dims)

    # Generate images.
    with tf.variable_scope('Generator'):  # Same scope as in train job.
        images = networks.conditional_generator(
            (noise, one_hot_labels), is_training=False)

    # Visualize images.
    reshaped_img = tfgan.eval.image_reshaper(
        images, num_cols=FLAGS.num_images_per_class)
    tf.summary.image('generated_images', reshaped_img, max_outputs=1)

    # Calculate evaluation metrics.
    tf.summary.scalar('MNIST_Classifier_score',
                      util.mnist_score(images, FLAGS.classifier_filename))
    tf.summary.scalar('MNIST_Cross_entropy',
                      util.mnist_cross_entropy(
                          images, one_hot_labels, FLAGS.classifier_filename))

    # Write images to disk.
    image_write_ops = None
    if FLAGS.write_to_disk:
        image_write_ops = tf.write_file(
            '%s/%s' % (FLAGS.eval_dir, 'conditional_gan.png'),
            tf.image.encode_png(data_provider.float_image_to_uint8(
                reshaped_img[0])))

    # For unit testing, use `run_eval_loop=False`.
    if not run_eval_loop: return
    tf.contrib.training.evaluate_repeatedly(
        FLAGS.checkpoint_dir,
        hooks=[tf.contrib.training.SummaryAtEndHook(FLAGS.eval_dir),
               tf.contrib.training.StopAfterNEvalsHook(1)],
        eval_ops=image_write_ops,
        max_number_of_evaluations=FLAGS.max_number_of_evaluations)
예제 #5
0
def main(_, run_eval_loop=True):
    with tf.name_scope('inputs'):
        noise_args = (FLAGS.noise_samples, CAT_SAMPLE_POINTS,
                      CONT_SAMPLE_POINTS, FLAGS.unstructured_noise_dims,
                      FLAGS.continuous_noise_dims)
        # Use fixed noise vectors to illustrate the effect of each dimension.
        display_noise1 = util.get_eval_noise_categorical(*noise_args)
        display_noise2 = util.get_eval_noise_continuous_dim1(*noise_args)
        display_noise3 = util.get_eval_noise_continuous_dim2(*noise_args)
        _validate_noises([display_noise1, display_noise2, display_noise3])

    # Visualize the effect of each structured noise dimension on the generated
    # image.
    def generator_fn(inputs):
        return networks.infogan_generator(inputs,
                                          len(CAT_SAMPLE_POINTS),
                                          is_training=False)

    with tf.variable_scope(
            'Generator') as genscope:  # Same scope as in training.
        categorical_images = generator_fn(display_noise1)
    reshaped_categorical_img = tfgan.eval.image_reshaper(
        categorical_images, num_cols=len(CAT_SAMPLE_POINTS))
    tf.summary.image('categorical', reshaped_categorical_img, max_outputs=1)

    with tf.variable_scope(genscope, reuse=True):
        continuous1_images = generator_fn(display_noise2)
    reshaped_continuous1_img = tfgan.eval.image_reshaper(
        continuous1_images, num_cols=len(CONT_SAMPLE_POINTS))
    tf.summary.image('continuous1', reshaped_continuous1_img, max_outputs=1)

    with tf.variable_scope(genscope, reuse=True):
        continuous2_images = generator_fn(display_noise3)
    reshaped_continuous2_img = tfgan.eval.image_reshaper(
        continuous2_images, num_cols=len(CONT_SAMPLE_POINTS))
    tf.summary.image('continuous2', reshaped_continuous2_img, max_outputs=1)

    # Evaluate image quality.
    all_images = tf.concat(
        [categorical_images, continuous1_images, continuous2_images], 0)
    tf.summary.scalar('MNIST_Classifier_score',
                      util.mnist_score(all_images, FLAGS.classifier_filename))

    # Write images to disk.
    image_write_ops = []
    if FLAGS.write_to_disk:
        image_write_ops.append(
            _get_write_image_ops(FLAGS.eval_dir, 'categorical_infogan.png',
                                 reshaped_categorical_img[0]))
        image_write_ops.append(
            _get_write_image_ops(FLAGS.eval_dir, 'continuous1_infogan.png',
                                 reshaped_continuous1_img[0]))
        image_write_ops.append(
            _get_write_image_ops(FLAGS.eval_dir, 'continuous2_infogan.png',
                                 reshaped_continuous2_img[0]))

    # For unit testing, use `run_eval_loop=False`.
    if not run_eval_loop: return
    tf.contrib.training.evaluate_repeatedly(
        FLAGS.checkpoint_dir,
        hooks=[
            tf.contrib.training.SummaryAtEndHook(FLAGS.eval_dir),
            tf.contrib.training.StopAfterNEvalsHook(1)
        ],
        eval_ops=image_write_ops,
        max_number_of_evaluations=FLAGS.max_number_of_evaluations)
예제 #6
0
 def test_minibatch_correct(self):
     mscore = util.mnist_score(
         tf.concat([real_digit(), real_digit(), fake_digit()], 0))
     with self.test_session():
         self.assertNear(1.612828, mscore.eval(), 1e-6)
예제 #7
0
 def test_single_example_correct(self):
     real_score = util.mnist_score(real_digit())
     fake_score = util.mnist_score(fake_digit())
     with self.test_session():
         self.assertNear(1.0, real_score.eval(), 1e-6)
         self.assertNear(1.0, fake_score.eval(), 1e-6)
예제 #8
0
 def test_any_batch_size(self):
     inputs = tf.placeholder(tf.float32, shape=[None, 28, 28, 1])
     mscore = util.mnist_score(inputs)
     for batch_size in [4, 16, 30]:
         with self.test_session() as sess:
             sess.run(mscore, feed_dict={inputs: np.zeros([batch_size, 28, 28, 1])})