def test_remote_regressor_mm_intercept(monkeypatch): """Test remote regressor process with an intercept term""" from resistics.regression.remote import RemoteRegressor from mocks import mock_window_selector import numpy as np # patch out the writeTF function monkeypatch.setattr(RemoteRegressor, "writeResult", mock_remote_regressor_writeResult) selector = mock_window_selector(intercept=True) regressor = RemoteRegressor(selector, "test") regressor.setInput("local", ["Hx", "Hy"]) regressor.setOutput("local", ["Ex", "Ey"]) regressor.setRemote("remote", ["Hx", "Hy"]) regressor.setMethod("mm", intercept=True) regressor.setSmooth("hann", 1) assert regressor.inCross == [] assert regressor.outCross == [] assert regressor.remoteCross == ["Hx", "Hy"] regressor.process() # expected expected_evalfreq = np.array([24, 40]) expected_impedances = [ np.array([ [5.1887448 + 0.0j, 3.23769067 + 0.0j, 1.72606573 + 0.0j], [-0.50578302 + 0.0j, 9.02951015 + 0.0j, -5.3106386 + 0.0j], ]), np.array([ [4.16876826 + 0.0j, 3.93359941 + 0.0j, 0.1393923 + 0.0j], [2.56283624 + 0.0j, 5.80703278 + 0.0j, 0.57298163 + 0.0j], ]), ] expected_variances = [ np.array([ [0.13001168, 0.07693714, 0.4976025], [0.2015383, 0.11926451, 0.77136119], ]), np.array([ [4.28780289, 6.03441972, 48.5332116], [8.09793129, 11.39658644, 91.65967348], ]), ] np.testing.assert_equal(regressor.evalFreq, expected_evalfreq) np.testing.assert_almost_equal(regressor.parameters[0], expected_impedances[0]) np.testing.assert_almost_equal(regressor.parameters[1], expected_impedances[1]) np.testing.assert_almost_equal(regressor.variances[0], expected_variances[0]) np.testing.assert_almost_equal(regressor.variances[1], expected_variances[1])
def test_remote_regressor_cm_intercept(monkeypatch): """Test remote regressor process with an intercept term""" from resistics.regression.remote import RemoteRegressor from mocks import mock_window_selector import numpy as np # patch out the writeTF function monkeypatch.setattr(RemoteRegressor, "writeResult", mock_remote_regressor_writeResult) selector = mock_window_selector(intercept=True) regressor = RemoteRegressor(selector, "test") regressor.setInput("local", ["Hx", "Hy"]) regressor.setOutput("local", ["Ex", "Ey"]) regressor.setRemote("remote", ["Hx", "Hy"]) regressor.setMethod("cm", intercept=True) regressor.setSmooth("hann", 1) assert regressor.inCross == [] assert regressor.outCross == [] assert regressor.remoteCross == ["Hx", "Hy"] regressor.process() # expected expected_evalfreq = np.array([24, 40]) expected_impedances = [ np.array([ [4.5708818 + 0.0j, 3.83094409 + 0.0j, 0.61631404 + 0.0j], [-0.34507489 + 0.0j, 8.7452132 + 0.0j, -2.45585909 + 0.0j], ]), np.array([ [3.78599245 + 0.0j, 4.36870089 + 0.0j, 0.04394717 + 0.0j], [0.71686719 + 0.0j, 8.0305959 + 0.0j, -0.9092429 + 0.0j], ]), ] expected_variances = [ np.array([ [7.10053809, 4.20189219, 27.17637004], [15.82405112, 9.36421381, 60.56446191], ]), np.array([ [3.28799791, 4.62734876, 37.21651907], [8.76270122, 12.33214734, 99.1841377], ]), ] np.testing.assert_equal(regressor.evalFreq, expected_evalfreq) np.testing.assert_almost_equal(regressor.parameters[0], expected_impedances[0]) np.testing.assert_almost_equal(regressor.parameters[1], expected_impedances[1]) np.testing.assert_almost_equal(regressor.variances[0], expected_variances[0]) np.testing.assert_almost_equal(regressor.variances[1], expected_variances[1])
def test_remote_regressor_ols_intercept(monkeypatch): """Test remote regressor process with an intercept term""" from resistics.regression.remote import RemoteRegressor from mocks import mock_window_selector import numpy as np # patch out the writeTF function monkeypatch.setattr(RemoteRegressor, "writeResult", mock_remote_regressor_writeResult) selector = mock_window_selector(intercept=True) regressor = RemoteRegressor(selector, "test") regressor.setInput("local", ["Hx", "Hy"]) regressor.setOutput("local", ["Ex", "Ey"]) regressor.setRemote("remote", ["Hx", "Hy"]) regressor.setMethod("ols", intercept=True) regressor.setSmooth("hann", 1) assert regressor.inCross == [] assert regressor.outCross == [] assert regressor.remoteCross == ["Hx", "Hy"] regressor.process() # expected expected_evalfreq = np.array([24, 40]) expected_impedances = [ np.array([ [3.0 + 0.0j, 5.0 + 0.0j, 5.0 + 0.0j], [2.0 + 0.0j, 7.0 + 0.0j, -9.0 + 0.0j], ]), np.array([ [3.0 + 0.0j, 5.0 + 0.0j, 5.0 + 0.0j], [2.0 + 0.0j, 7.0 + 0.0j, -9.0 + 0.0j], ]), ] expected_variances = [ np.array([ [1.21088688e-23, 7.25740911e-24, 3.34802360e-23], [3.95687739e-23, 2.37154094e-23, 1.09405091e-22], ]), np.array([ [2.48945809e-27, 3.32569517e-27, 2.95106525e-26], [1.00812766e-27, 1.34676912e-27, 1.19505948e-26], ]), ] np.testing.assert_equal(regressor.evalFreq, expected_evalfreq) np.testing.assert_almost_equal(regressor.parameters[0], expected_impedances[0]) np.testing.assert_almost_equal(regressor.parameters[1], expected_impedances[1]) np.testing.assert_almost_equal(regressor.variances[0], expected_variances[0]) np.testing.assert_almost_equal(regressor.variances[1], expected_variances[1])
def test_remote_regressor_getSmoothLen(monkeypatch): """Test remote regressor process""" from resistics.regression.remote import RemoteRegressor from mocks import mock_window_selector import numpy as np selector = mock_window_selector() regressor = RemoteRegressor(selector, "test") regressor.setInput("site1", ["Hx", "Hy"]) regressor.setOutput("site1", ["Ex", "Ey"]) regressor.setRemote("remote1", ["Hx", "Hy"]) regressor.setSmooth("hann", 1) assert regressor.smoothLen == 1 regressor.setSmooth("hann", 12) assert regressor.getSmoothLen(65) == 13
def test_remote_regressor_setRemote(): """Test remote regressor setRemote""" from resistics.regression.remote import RemoteRegressor from mocks import mock_window_selector selector = mock_window_selector() regressor = RemoteRegressor(selector, "test") assert regressor.remoteCross == ["Hx", "Hy"] regressor.setRemote("remote1", ["Ex", "Hy", "Hx"]) assert regressor.remoteSite == "remote1" assert regressor.remoteCross == ["Ex", "Hy", "Hx"] assert regressor.remoteSize == 3 regressor.setRemote("remote2", ["Hx"]) assert regressor.remoteSite == "remote2" assert regressor.remoteCross == ["Hx"] assert regressor.remoteSize == 1
def test_local_regressor_cm_noise(monkeypatch): """Test local regressor process with some noise added to the localsite""" from resistics.regression.remote import RemoteRegressor from mocks import mock_window_selector import numpy as np # patch out the writeTF function monkeypatch.setattr(RemoteRegressor, "writeResult", mock_remote_regressor_writeResult) selector = mock_window_selector(localnoise=True) regressor = RemoteRegressor(selector, "test") regressor.setInput("local", ["Hx", "Hy"]) regressor.setOutput("local", ["Ex", "Ey"]) regressor.setRemote("remote", ["Hx", "Hy"]) regressor.setMethod("cm", intercept=False) regressor.setSmooth("hann", 1) assert regressor.inCross == [] assert regressor.outCross == [] regressor.process() # expected expected_evalfreq = np.array([24, 40]) expected_impedances = [ np.array([ [4.32416997 + 0.0j, 3.36294245 + 0.0j], [1.06908193 + 0.0j, 7.60932995 + 0.0j], ]), np.array([ [4.10868381 + 0.0j, 3.465675 + 0.0j], [1.78789942 + 0.0j, 7.24148737 + 0.0j], ]), ] expected_variances = [ np.array([[7.01571556e-04, 4.47737982e-04], [4.71858833e-01, 3.01136955e-01]]), np.array([[0.03930329, 0.05217041], [0.02580595, 0.03425431]]), ] np.testing.assert_equal(regressor.evalFreq, expected_evalfreq) np.testing.assert_almost_equal(regressor.parameters[0], expected_impedances[0]) np.testing.assert_almost_equal(regressor.parameters[1], expected_impedances[1]) np.testing.assert_almost_equal(regressor.variances[0], expected_variances[0]) np.testing.assert_almost_equal(regressor.variances[1], expected_variances[1])
def test_local_regressor_mm_noise(monkeypatch): """Test local regressor process with some noise added to the localsite""" from resistics.regression.remote import RemoteRegressor from mocks import mock_window_selector import numpy as np # patch out the writeTF function monkeypatch.setattr(RemoteRegressor, "writeResult", mock_remote_regressor_writeResult) selector = mock_window_selector(localnoise=True) regressor = RemoteRegressor(selector, "test") regressor.setInput("local", ["Hx", "Hy"]) regressor.setOutput("local", ["Ex", "Ey"]) regressor.setRemote("remote", ["Hx", "Hy"]) regressor.setMethod("mm", intercept=False) regressor.setSmooth("hann", 1) assert regressor.inCross == [] assert regressor.outCross == [] regressor.process() # expected expected_evalfreq = np.array([24, 40]) expected_impedances = [ np.array([ [4.28467732 + 0.0j, 3.39812143 + 0.0j], [2.33069538 + 0.0j, 6.59175726 + 0.0j], ]), np.array([ [3.77407493 + 0.0j, 3.86441015 + 0.0j], [1.21575149 + 0.0j, 7.35576611 + 0.0j], ]), ] expected_variances = [ np.array([[5.31246449e-04, 3.39037709e-04], [3.13860843e00, 2.00303760e00]]), np.array([[0.11543121, 0.15322112], [47.59264394, 63.17353725]]), ] np.testing.assert_equal(regressor.evalFreq, expected_evalfreq) np.testing.assert_almost_equal(regressor.parameters[0], expected_impedances[0]) np.testing.assert_almost_equal(regressor.parameters[1], expected_impedances[1]) np.testing.assert_almost_equal(regressor.variances[0], expected_variances[0]) np.testing.assert_almost_equal(regressor.variances[1], expected_variances[1])
def test_local_regressor_ols_noise(monkeypatch): """Test local regressor process with some noise added to the localsite""" from resistics.regression.remote import RemoteRegressor from mocks import mock_window_selector import numpy as np # patch out the writeTF function monkeypatch.setattr(RemoteRegressor, "writeResult", mock_remote_regressor_writeResult) selector = mock_window_selector(localnoise=True) regressor = RemoteRegressor(selector, "test") regressor.setInput("local", ["Hx", "Hy"]) regressor.setOutput("local", ["Ex", "Ey"]) regressor.setRemote("remote", ["Hx", "Hy"]) regressor.setMethod("ols", intercept=False) regressor.setSmooth("hann", 1) assert regressor.inCross == [] assert regressor.outCross == [] regressor.process() # expected expected_evalfreq = np.array([24, 40]) expected_impedances = [ np.array([ [4.17149691 + 0.0j, 3.48769594 + 0.0j], [1.48229546 + 0.0j, 7.28114671 + 0.0j], ]), np.array([ [4.08086708 + 0.0j, 3.51508884 + 0.0j], [-1.80159334 + 0.0j, 10.70916092 + 0.0j], ]), ] expected_variances = [ np.array([[0.01284865, 0.00819992], [0.68188147, 0.43517191]]), np.array([[0.03504211, 0.04651421], [18.06330838, 23.97687941]]), ] np.testing.assert_equal(regressor.evalFreq, expected_evalfreq) np.testing.assert_almost_equal(regressor.parameters[0], expected_impedances[0]) np.testing.assert_almost_equal(regressor.parameters[1], expected_impedances[1]) np.testing.assert_almost_equal(regressor.variances[0], expected_variances[0]) np.testing.assert_almost_equal(regressor.variances[1], expected_variances[1])
def test_remote_regressor_cm_intersite(monkeypatch): """Test remote regressor process with a different site for the ouput""" from resistics.regression.remote import RemoteRegressor from mocks import mock_window_selector import numpy as np # patch out the writeTF function monkeypatch.setattr(RemoteRegressor, "writeResult", mock_remote_regressor_writeResult) selector = mock_window_selector() regressor = RemoteRegressor(selector, "test") regressor.setInput("local", ["Hx", "Hy"]) regressor.setOutput("inter", ["Ex", "Ey"]) regressor.setRemote("remote", ["Hx", "Hy"]) regressor.setMethod("cm", intercept=False) regressor.setSmooth("hann", 1) assert regressor.inCross == [] assert regressor.outCross == [] regressor.process() # expected expected_evalfreq = np.array([24, 40]) expected_impedances = [ np.array([[6.0 + 0.0j, 8.0 + 0.0j], [4.0 + 0.0j, 1.0 + 0.0j]]), np.array([[6.0 + 0.0j, 8.0 + 0.0j], [4.0 + 0.0j, 1.0 + 0.0j]]), ] expected_variances = [ np.array([[9.14649740e-29, 5.89343794e-29], [1.42914022e-30, 9.20849678e-31]]), np.array([[1.38145310e-28, 1.84606779e-28], [3.45363276e-29, 4.61516947e-29]]), ] np.testing.assert_equal(regressor.evalFreq, expected_evalfreq) np.testing.assert_almost_equal(regressor.parameters[0], expected_impedances[0]) np.testing.assert_almost_equal(regressor.parameters[1], expected_impedances[1]) np.testing.assert_almost_equal(regressor.variances[0], expected_variances[0]) np.testing.assert_almost_equal(regressor.variances[1], expected_variances[1])
def test_remote_regressor_cm(monkeypatch): """Test remote regressor process""" from resistics.regression.remote import RemoteRegressor from mocks import mock_window_selector import numpy as np # patch out the writeTF function monkeypatch.setattr(RemoteRegressor, "writeResult", mock_remote_regressor_writeResult) selector = mock_window_selector() regressor = RemoteRegressor(selector, "test") regressor.setInput("local", ["Hx", "Hy"]) regressor.setOutput("local", ["Ex", "Ey"]) regressor.setRemote("remote", ["Hx", "Hy"]) regressor.setMethod("cm", intercept=False) regressor.setSmooth("hann", 1) assert regressor.inCross == [] assert regressor.outCross == [] regressor.process() # expected expected_evalfreq = np.array([24, 40]) expected_impedances = [ np.array([[3.0 + 0.0j, 5.0 + 0.0j], [2.0 + 0.0j, 7.0 + 0.0j]]), np.array([[3.0 + 0.0j, 5.0 + 0.0j], [2.0 + 0.0j, 7.0 + 0.0j]]), ] expected_variances = [ np.array([[2.78469341e-28, 1.79044909e-28], [1.64240080e-27, 1.05599956e-27]]), np.array([[1.47463485e-29, 1.96730235e-29], [5.89853939e-29, 7.86920938e-29]]), ] np.testing.assert_equal(regressor.evalFreq, expected_evalfreq) np.testing.assert_almost_equal(regressor.parameters[0], expected_impedances[0]) np.testing.assert_almost_equal(regressor.parameters[1], expected_impedances[1]) np.testing.assert_almost_equal(regressor.variances[0], expected_variances[0]) np.testing.assert_almost_equal(regressor.variances[1], expected_variances[1])