def main(): args = parser.parse_args() if not os.path.exists(args.input_dir): print("Error: Invalid input folder %s" % args.input_dir) exit(-1) if not args.output_file: print("Error: Please specify an output file") exit(-1) tf = transforms.Compose( [transforms.Scale([299, 299]), transforms.ToTensor()]) mean_torch = autograd.Variable(torch.from_numpy( np.array([0.485, 0.456, 0.406]).reshape([1, 3, 1, 1]).astype('float32')).cuda(), volatile=True) std_torch = autograd.Variable(torch.from_numpy( np.array([0.229, 0.224, 0.225]).reshape([1, 3, 1, 1]).astype('float32')).cuda(), volatile=True) mean_tf = autograd.Variable(torch.from_numpy( np.array([0.5, 0.5, 0.5]).reshape([1, 3, 1, 1]).astype('float32')).cuda(), volatile=True) std_tf = autograd.Variable(torch.from_numpy( np.array([0.5, 0.5, 0.5]).reshape([1, 3, 1, 1]).astype('float32')).cuda(), volatile=True) dataset = Dataset(args.input_dir, transform=tf) loader = data.DataLoader(dataset, batch_size=args.batch_size, shuffle=False) config, resmodel = get_model1() config, inresmodel = get_model2() config, incepv3model = get_model3() config, rexmodel = get_model4() net1 = resmodel.net net2 = inresmodel.net net3 = incepv3model.net net4 = rexmodel.net checkpoint = torch.load('denoise_res_015.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: resmodel.load_state_dict(checkpoint['state_dict']) else: resmodel.load_state_dict(checkpoint) checkpoint = torch.load('denoise_inres_014.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: inresmodel.load_state_dict(checkpoint['state_dict']) else: inresmodel.load_state_dict(checkpoint) checkpoint = torch.load('denoise_incepv3_012.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: incepv3model.load_state_dict(checkpoint['state_dict']) else: incepv3model.load_state_dict(checkpoint) checkpoint = torch.load('denoise_rex_001.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: rexmodel.load_state_dict(checkpoint['state_dict']) else: rexmodel.load_state_dict(checkpoint) if not args.no_gpu: inresmodel = inresmodel.cuda() resmodel = resmodel.cuda() incepv3model = incepv3model.cuda() rexmodel = rexmodel.cuda() inresmodel.eval() resmodel.eval() incepv3model.eval() rexmodel.eval() outputs = [] for batch_idx, (input, _) in enumerate(loader): if not args.no_gpu: input = input.cuda() input_var = autograd.Variable(input, volatile=True) input_tf = (input_var - mean_tf) / std_tf input_torch = (input_var - mean_torch) / std_torch #clean1 = net1.denoise[0](input_torch) #clean2 = net2.denoise[0](input_tf) #clean3 = net3.denoise(input_tf) #labels1 = net1(clean1,False)[-1] #labels2 = net2(clean2,False)[-1] #labels3 = net3(clean3,False)[-1] labels1 = net1(input_torch, True)[-1] labels2 = net2(input_tf, True)[-1] labels3 = net3(input_tf, True)[-1] labels4 = net4(input_torch, True)[-1] labels = (labels1 + labels2 + labels3 + labels4).max( 1 )[1] + 1 # argmax + offset to match Google's Tensorflow + Inception 1001 class ids outputs.append(labels.data.cpu().numpy()) outputs = np.concatenate(outputs, axis=0) with open(args.output_file, 'w') as out_file: filenames = dataset.filenames() for filename, label in zip(filenames, outputs): filename = os.path.basename(filename) out_file.write('{0},{1}\n'.format(filename, label))
def main(): args = parser.parse_args() if not os.path.exists(args.input_dir): print("Error: Invalid input folder %s" % args.input_dir) exit(-1) if not os.path.exists(args.output_dir): print("Error: Invalid output folder %s" % args.output_dir) exit(-1) with torch.no_grad(): config, resmodel = get_model1() config, inresmodel = get_model2() config, incepv3model = get_model3() config, rexmodel = get_model4() net1 = resmodel.net net2 = inresmodel.net net3 = incepv3model.net net4 = rexmodel.net checkpoint = torch.load('denoise_res_015.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: resmodel.load_state_dict(checkpoint['state_dict']) else: resmodel.load_state_dict(checkpoint) checkpoint = torch.load('denoise_inres_014.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: inresmodel.load_state_dict(checkpoint['state_dict']) else: inresmodel.load_state_dict(checkpoint) checkpoint = torch.load('denoise_incepv3_012.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: incepv3model.load_state_dict(checkpoint['state_dict']) else: incepv3model.load_state_dict(checkpoint) checkpoint = torch.load('denoise_rex_001.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: rexmodel.load_state_dict(checkpoint['state_dict']) else: rexmodel.load_state_dict(checkpoint) if not args.no_gpu: inresmodel = inresmodel.cuda() resmodel = resmodel.cuda() incepv3model = incepv3model.cuda() rexmodel = rexmodel.cuda() inresmodel.eval() resmodel.eval() incepv3model.eval() rexmodel.eval() ''' watch the input dir for defense ''' observer = Observer() event_handler = FileEventHandler(batch_size=args.batch_size, input_dir=args.input_dir, net1=net1, net4=net4, output_dir=args.output_dir, no_gpu=args.no_gpu) observer.schedule(event_handler, args.input_dir, recursive=True) observer.start() print("watchdog start...") try: while True: time.sleep(0.5) except KeyboardInterrupt: observer.stop() observer.join() print("\nwatchdog stoped!")
def main(): parser = argparse.ArgumentParser() parser.add_argument('--imagenet-path', type=str, default='../../obfuscated_zoo/imagenet_val', help='path to the test_batch file from http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz') parser.add_argument('--start', type=int, default=0) parser.add_argument('--end', type=int, default=100) parser.add_argument('--no-gpu', action='store_true', default=False, help='disables GPU training') args = parser.parse_args() tf = transforms.Compose([ transforms.Scale([299, 299]), transforms.ToTensor() ]) mean_torch = autograd.Variable( torch.from_numpy(np.array([0.485, 0.456, 0.406]).reshape([1, 3, 1, 1]).astype('float32')).cuda(), volatile=True) std_torch = autograd.Variable( torch.from_numpy(np.array([0.229, 0.224, 0.225]).reshape([1, 3, 1, 1]).astype('float32')).cuda(), volatile=True) mean_tf = autograd.Variable( torch.from_numpy(np.array([0.5, 0.5, 0.5]).reshape([1, 3, 1, 1]).astype('float32')).cuda(), volatile=True) std_tf = autograd.Variable( torch.from_numpy(np.array([0.5, 0.5, 0.5]).reshape([1, 3, 1, 1]).astype('float32')).cuda(), volatile=True) test_loss = 0 correct = 0 total = 0 totalImages = 0 succImages = 0 faillist = [] # set up TensorFlow session # initialize a model config, resmodel = get_model1() config, inresmodel = get_model2() config, incepv3model = get_model3() config, rexmodel = get_model4() net1 = resmodel.net net2 = inresmodel.net net3 = incepv3model.net net4 = rexmodel.net net1 = torch.nn.DataParallel(net1,device_ids=range(torch.cuda.device_count())).cuda() net2 = torch.nn.DataParallel(net2,device_ids=range(torch.cuda.device_count())).cuda() net3 = torch.nn.DataParallel(net3,device_ids=range(torch.cuda.device_count())).cuda() net4 = torch.nn.DataParallel(net4,device_ids=range(torch.cuda.device_count())).cuda() checkpoint = torch.load('../all_models/guided-denoiser/denoise_res_015.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: resmodel.load_state_dict(checkpoint['state_dict']) else: resmodel.load_state_dict(checkpoint) checkpoint = torch.load('../all_models/guided-denoiser/denoise_inres_014.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: inresmodel.load_state_dict(checkpoint['state_dict']) else: inresmodel.load_state_dict(checkpoint) checkpoint = torch.load('../all_models/guided-denoiser/denoise_incepv3_012.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: incepv3model.load_state_dict(checkpoint['state_dict']) else: incepv3model.load_state_dict(checkpoint) checkpoint = torch.load('../all_models/guided-denoiser/denoise_rex_001.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: rexmodel.load_state_dict(checkpoint['state_dict']) else: rexmodel.load_state_dict(checkpoint) if not args.no_gpu: inresmodel = torch.nn.DataParallel(inresmodel,device_ids=range(torch.cuda.device_count())).cuda() resmodel = torch.nn.DataParallel(resmodel,device_ids=range(torch.cuda.device_count())).cuda() incepv3model = torch.nn.DataParallel(incepv3model,device_ids=range(torch.cuda.device_count())).cuda() rexmodel = torch.nn.DataParallel(rexmodel,device_ids=range(torch.cuda.device_count())).cuda() # # inresmodel = inresmodel.cuda() # resmodel = resmodel.cuda() # incepv3model = incepv3model.cuda() # rexmodel = rexmodel.cuda() inresmodel.eval() resmodel.eval() incepv3model.eval() rexmodel.eval() # initialize a data provider for CIFAR-10 images provider = ImageNet(args.imagenet_path, (299,299,3)) target_list = [10,11,13,23,33,46,51,57,74,77,79,85,98,115,122,125] start = 150 end = 950 total = 0 attacktime = 0 imageno = [] for i in range(start, end): # if i not in target_list: # continue success = False print('evaluating %d of [%d, %d)' % (i, start, end)) inputs, targets= provider[i] modify = np.random.randn(1,3,32,32) * 0.001 input_var = autograd.Variable(torch.from_numpy(inputs.transpose(2,0,1)).cuda(), volatile=True) input_tf = (input_var - mean_tf) / std_tf input_torch = (input_var - mean_torch) / std_torch logits1 = F.softmax(net1(input_torch,True)[-1],-1) logits2 = F.softmax(net2(input_tf,True)[-1],-1) logits3 = F.softmax(net3(input_tf,True)[-1],-1) logits4 = F.softmax(net4(input_torch,True)[-1],-1) logits = ((logits1+logits2+logits3+logits4).data.cpu().numpy())/4 # print(logits) if np.argmax(logits) != targets: print('skip the wrong example ', i) print('max label {} , target label {}'.format(np.argmax(logits), targets)) continue totalImages += 1 episode_start =time.time() for runstep in range(200): step_start = time.time() Nsample = np.random.randn(npop, 3,32,32) modify_try = modify.repeat(npop,0) + sigma*Nsample temp = [] resize_start =time.time() for x in modify_try: temp.append(cv2.resize(x.transpose(1,2,0), dsize=(299,299), interpolation=cv2.INTER_LINEAR).transpose(2,0,1)) modify_try = np.array(temp) # print('resize time ', time.time()-resize_start,flush=True) #modify_try = cv2.resize(modify_try.transpose(0,2,3,1), dsize=(299, 299), interpolation=cv2.INTER_CUBIC).transpose(0,3,1,2) #print(modify_try.shape, flush=True) newimg = torch_arctanh((inputs-boxplus) / boxmul).transpose(2,0,1) inputimg = np.tanh(newimg+modify_try) * boxmul + boxplus if runstep % 10 == 0: temp = [] for x in modify: temp.append(cv2.resize(x.transpose(1,2,0), dsize=(299,299), interpolation=cv2.INTER_LINEAR).transpose(2,0,1)) modify_test = np.array(temp) #modify_test = cv2.resize(modify.transpose(0,2,3,1), dsize=(299, 299), interpolation=cv2.INTER_CUBIC).transpose(0,3,1,2) realinputimg = np.tanh(newimg+modify_test) * boxmul + boxplus realdist = realinputimg - (np.tanh(newimg) * boxmul + boxplus) realclipdist = np.clip(realdist, -epsi, epsi) realclipinput = realclipdist + (np.tanh(newimg) * boxmul + boxplus) l2real = np.sum((realclipinput - (np.tanh(newimg) * boxmul + boxplus))**2)**0.5 #l2real = np.abs(realclipinput - inputs.numpy()) # realclipinput = realclipinput.transpose(0, 2, 3, 1) realclipinput = np.squeeze(realclipinput) realclipinput = np.asarray(realclipinput,dtype = 'float32') # realclipinput_expand = [] # for x in range(samples): # realclipinput_expand.append(realclipinput) # realclipinput_expand = np.array(realclipinput_expand) input_var = autograd.Variable(torch.from_numpy(realclipinput).cuda(), volatile=True) input_tf = (input_var - mean_tf) / std_tf input_torch = (input_var - mean_torch) / std_torch logits1 = F.softmax(net1(input_torch, True)[-1],-1) logits2 = F.softmax(net2(input_tf, True)[-1],-1) logits3 = F.softmax(net3(input_tf, True)[-1],-1) logits4 = F.softmax(net4(input_torch, True)[-1],-1) logits = logits1 + logits2 + logits3 + logits4 outputsreal = (logits.data.cpu().numpy()[0])/4 print('probs ',np.sort(outputsreal)[-1:-6:-1]) print('target label ', np.argsort(outputsreal)[-1:-6:-1]) print('negative_probs ', np.sort(outputsreal)[0:3:1]) sys.stdout.flush() # print(outputsreal) #print(np.abs(realclipdist).max()) #print('l2real: '+str(l2real.max())) # print(outputsreal) if (np.argmax(outputsreal) != targets) and (np.abs(realclipdist).max() <= epsi): attacktime += time.time()-episode_start print('episode time : ', time.time()-episode_start) print('atack time : ', attacktime) succImages += 1 success = True print('clipimage succImages: '+str(succImages)+' totalImages: '+str(totalImages)) print('lirealsucc: '+str(realclipdist.max())) sys.stdout.flush() # imsave(folder+classes[targets[0]]+'_'+str("%06d" % batch_idx)+'.jpg',inputs.transpose(1,2,0)) break dist = inputimg - (np.tanh(newimg) * boxmul + boxplus) clipdist = np.clip(dist, -epsi, epsi) clipinput = (clipdist + (np.tanh(newimg) * boxmul + boxplus)).reshape(npop,3,299,299) target_onehot = np.zeros((1,1000)) target_onehot[0][targets]=1. input_start = time.time() # clipinput = clipinput.transpose(0, 2, 3, 1) clipinput = np.squeeze(clipinput) clipinput = np.asarray(clipinput,dtype = 'float32') # clipinput_expand = [] # for x in range(samples): # clipinput_expand.append(clipinput) # clipinput_expand = np.array(clipinput_expand) # clipinput_expand = clipinput_expand.reshape((samples * npop, 299, 299, 3)) # clipinput = clipinput.reshape((npop, 299, 299, 3)) input_var = autograd.Variable(torch.from_numpy(clipinput).cuda(), volatile=True) input_tf = (input_var - mean_tf) / std_tf input_torch = (input_var - mean_torch) / std_torch logits1 = F.softmax(net1(input_torch, True)[-1],-1) logits2 = F.softmax(net2(input_tf, True)[-1],-1) logits3 = F.softmax(net3(input_tf, True)[-1],-1) logits4 = F.softmax(net4(input_torch, True)[-1],-1) logits = logits1 + logits2 + logits3 + logits4 outputs = (logits.data.cpu().numpy())/4 # print('input_time : ', time.time()-input_start,flush=True) target_onehot = target_onehot.repeat(npop,0) outputs = np.log(outputs) real = (target_onehot * outputs).sum(1) other = ((1. - target_onehot) * outputs - target_onehot * 10000.).max(1)[0] # real = np.log((target_onehot * outputs).sum(1)+1e-30) # other = np.log(((1. - target_onehot) * outputs - target_onehot * 10000.).max(1)[0]+1e-30) loss1 = np.clip(real - other, 0.,1000) Reward = 0.5 * loss1 # Reward = l2dist Reward = -Reward A = (Reward - np.mean(Reward)) / (np.std(Reward)+1e-7) modify = modify + (alpha/(npop*sigma)) * ((np.dot(Nsample.reshape(npop,-1).T, A)).reshape(3,32,32)) # print('one step time : ', time.time()-step_start) if not success: faillist.append(i) print('failed: ',faillist) # print('episode time : ', time.time()-episode_start,flush=True) print(faillist) success_rate = succImages/float(totalImages) print('attack success rate: %.2f%% (over %d data points)' % (success_rate*100, args.end-args.start))
def __init__(self): self._dataset = robustml.dataset.ImageNet(shape=(299, 299, 3)) self._threat_model = robustml.threat_model.L2(epsilon=4 / 255) args = parser.parse_args() tf = transforms.Compose( [transforms.Scale([299, 299]), transforms.ToTensor()]) self._mean_torch = autograd.Variable(torch.from_numpy( np.array([0.485, 0.456, 0.406]).reshape([1, 3, 1, 1]).astype('float32')).cuda(), volatile=True) self._std_torch = autograd.Variable(torch.from_numpy( np.array([0.229, 0.224, 0.225]).reshape([1, 3, 1, 1]).astype('float32')).cuda(), volatile=True) self._mean_tf = autograd.Variable(torch.from_numpy( np.array([0.5, 0.5, 0.5]).reshape([1, 3, 1, 1]).astype('float32')).cuda(), volatile=True) self._std_tf = autograd.Variable(torch.from_numpy( np.array([0.5, 0.5, 0.5]).reshape([1, 3, 1, 1]).astype('float32')).cuda(), volatile=True) config, resmodel = get_model1() config, inresmodel = get_model2() config, incepv3model = get_model3() config, rexmodel = get_model4() net1 = resmodel.net net2 = inresmodel.net net3 = incepv3model.net net4 = rexmodel.net checkpoint = torch.load('denoise_res_015.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: resmodel.load_state_dict(checkpoint['state_dict']) else: resmodel.load_state_dict(checkpoint) checkpoint = torch.load('denoise_inres_014.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: inresmodel.load_state_dict(checkpoint['state_dict']) else: inresmodel.load_state_dict(checkpoint) checkpoint = torch.load('denoise_incepv3_012.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: incepv3model.load_state_dict(checkpoint['state_dict']) else: incepv3model.load_state_dict(checkpoint) checkpoint = torch.load('denoise_rex_001.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: rexmodel.load_state_dict(checkpoint['state_dict']) else: rexmodel.load_state_dict(checkpoint) if not args.no_gpu: inresmodel = inresmodel.cuda() resmodel = resmodel.cuda() incepv3model = incepv3model.cuda() rexmodel = rexmodel.cuda() inresmodel.eval() resmodel.eval() incepv3model.eval() rexmodel.eval() self._net1 = net1 self._net2 = net2 self._net3 = net3 self._net4 = net4
def defense_denoise_14(input_dir, batch_size, no_gpu): print('Running defense: Randome_denoise_14') if not os.path.exists(input_dir): print("Error: Invalid input folder %s" % input_dir) exit(-1) tf = transforms.Compose( [transforms.Resize([299, 299]), transforms.ToTensor()]) with torch.no_grad(): mean_torch = autograd.Variable( torch.from_numpy( np.array([0.485, 0.456, 0.406]).reshape([1, 3, 1, 1]).astype('float32')).cuda()) std_torch = autograd.Variable( torch.from_numpy( np.array([0.229, 0.224, 0.225]).reshape([1, 3, 1, 1]).astype('float32')).cuda()) mean_tf = autograd.Variable( torch.from_numpy( np.array([0.5, 0.5, 0.5]).reshape([1, 3, 1, 1]).astype('float32')).cuda()) std_tf = autograd.Variable( torch.from_numpy( np.array([0.5, 0.5, 0.5]).reshape([1, 3, 1, 1]).astype('float32')).cuda()) dataset = Dataset(input_dir, transform=tf) loader = data.DataLoader(dataset, batch_size=batch_size, shuffle=False) config, resmodel = get_model1() config, inresmodel = get_model2() config, incepv3model = get_model3() config, rexmodel = get_model4() net1 = resmodel.net net2 = inresmodel.net net3 = incepv3model.net net4 = rexmodel.net checkpoint = torch.load('denoise_res_015.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: resmodel.load_state_dict(checkpoint['state_dict']) else: resmodel.load_state_dict(checkpoint) checkpoint = torch.load('denoise_inres_014.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: inresmodel.load_state_dict(checkpoint['state_dict']) else: inresmodel.load_state_dict(checkpoint) checkpoint = torch.load('denoise_incepv3_012.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: incepv3model.load_state_dict(checkpoint['state_dict']) else: incepv3model.load_state_dict(checkpoint) checkpoint = torch.load('denoise_rex_001.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: rexmodel.load_state_dict(checkpoint['state_dict']) else: rexmodel.load_state_dict(checkpoint) if not no_gpu: inresmodel = inresmodel.cuda() resmodel = resmodel.cuda() incepv3model = incepv3model.cuda() rexmodel = rexmodel.cuda() inresmodel.eval() resmodel.eval() incepv3model.eval() rexmodel.eval() final_labels = {} outputs = [] for batch_idx, (input, _) in enumerate(loader): if not no_gpu: input = input.cuda() with torch.no_grad(): input_var = autograd.Variable(input) input_tf = (input_var - mean_tf) / std_tf input_torch = (input_var - mean_torch) / std_torch labels1 = net1(input_torch, True)[-1] # labels2 = net2(input_tf,True)[-1] # labels3 = net3(input_tf,True)[-1] labels4 = net4(input_torch, True)[-1] labels = (labels1 + labels4).max( 1 )[1] + 1 # argmax + offset to match Google's Tensorflow + Inception 1001 class ids outputs.append(labels.data.cpu().numpy()) outputs = np.concatenate(outputs, axis=0) filenames = dataset.filenames() filenames = [os.path.basename(ii) for ii in filenames] final_labels.update(dict(zip(filenames, outputs))) return final_labels
def main(): start_time = time.time() args = parser.parse_args() if not os.path.exists(args.input_dir): print("Error: Invalid input folder %s" % args.input_dir) exit(-1) tf = transforms.Compose([ transforms.Resize([args.img_size,args.img_size]), transforms.ToTensor() ]) tf_flip = transforms.Compose([ transforms.ToPILImage(), transforms.RandomHorizontalFlip(p=0.5), transforms.ToTensor() ]) tf_shrink = transforms.Compose([ transforms.ToPILImage(), transforms.Resize([args.img_size,args.img_size]), transforms.ToTensor() ]) with torch.no_grad(): mean_torch = autograd.Variable(torch.from_numpy(np.array([0.485, 0.456, 0.406]).reshape([1,3,1,1]).astype('float32')).cuda()) std_torch = autograd.Variable(torch.from_numpy(np.array([0.229, 0.224, 0.225]).reshape([1,3,1,1]).astype('float32')).cuda()) mean_tf = autograd.Variable(torch.from_numpy(np.array([0.5, 0.5, 0.5]).reshape([1,3,1,1]).astype('float32')).cuda()) std_tf = autograd.Variable(torch.from_numpy(np.array([0.5, 0.5, 0.5]).reshape([1,3,1,1]).astype('float32')).cuda()) dataset = Dataset(args.input_dir, transform=tf) loader = data.DataLoader(dataset, batch_size=args.batch_size, shuffle=False) config, resmodel = get_model1() config, inresmodel = get_model2() config, incepv3model = get_model3() config, rexmodel = get_model4() net1 = resmodel.net net2 = inresmodel.net net3 = incepv3model.net net4 = rexmodel.net checkpoint = torch.load('denoise_res_015.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: resmodel.load_state_dict(checkpoint['state_dict']) else: resmodel.load_state_dict(checkpoint) checkpoint = torch.load('denoise_inres_014.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: inresmodel.load_state_dict(checkpoint['state_dict']) else: inresmodel.load_state_dict(checkpoint) checkpoint = torch.load('denoise_incepv3_012.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: incepv3model.load_state_dict(checkpoint['state_dict']) else: incepv3model.load_state_dict(checkpoint) checkpoint = torch.load('denoise_rex_001.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: rexmodel.load_state_dict(checkpoint['state_dict']) else: rexmodel.load_state_dict(checkpoint) if not args.no_gpu: inresmodel = inresmodel.cuda() resmodel = resmodel.cuda() incepv3model = incepv3model.cuda() rexmodel = rexmodel.cuda() inresmodel.eval() resmodel.eval() incepv3model.eval() rexmodel.eval() #inceptionresnetv2 for ramdon padding model = inceptionresnetv2(num_classes=1001, pretrained='imagenet+background') model = model.cuda() model.eval() labels_denoise = {} labels_random = {} denoise_outputs = [] random_outputs = [] for batch_idx, (input, _) in enumerate(loader): # Random padding # bilateral filtering temp_numpy = input.data.numpy() temp_numpy = np.reshape(temp_numpy, (3, 299, 299)) temp_numpy = np.moveaxis(temp_numpy, -1, 0) temp_numpy = np.moveaxis(temp_numpy, -1, 0) temp_numpy = cv2.bilateralFilter(temp_numpy,6,50,50) temp_numpy = np.moveaxis(temp_numpy, -1, 0) temp_numpy = np.reshape(temp_numpy, (1, 3, 299, 299)) input00 = torch.from_numpy(temp_numpy) length_input, _, _, _ = input.size() iter_labels = np.zeros([length_input, 1001, args.itr]) for j in range(args.itr): # random fliping input0 = batch_transform(input00, tf_flip, 299) # random resizing resize_shape_ = random.randint(310, 331) image_resize = 331 tf_rand_resize = transforms.Compose([ transforms.ToPILImage(), transforms.Resize([resize_shape_, resize_shape_]), transforms.ToTensor() ]) input1 = batch_transform(input0, tf_rand_resize, resize_shape_) # ramdom padding shape = [random.randint(0, image_resize - resize_shape_), random.randint(0, image_resize - resize_shape_), image_resize] # print(shape) new_input = padding_layer_iyswim(input1, shape, tf_shrink) #print(type(new_input)) if not args.no_gpu: new_input = new_input.cuda() with torch.no_grad(): input_var = autograd.Variable(new_input) logits = model(input_var) labels = logits.max(1)[1] labels_index = labels.data.tolist() print(len(labels_index)) iter_labels[range(len(iter_labels)), labels_index, j] = 1 final_labels = np.sum(iter_labels, axis=-1) labels = np.argmax(final_labels, 1) print(labels) random_outputs.append(labels) # Denoise if not args.no_gpu: input = input.cuda() with torch.no_grad(): input_var = autograd.Variable(input) input_tf = (input_var-mean_tf)/std_tf input_torch = (input_var - mean_torch)/std_torch labels1 = net1(input_torch,True)[-1] # labels2 = net2(input_tf,True)[-1] # labels3 = net3(input_tf,True)[-1] labels4 = net4(input_torch,True)[-1] labels = (labels1+labels4).max(1)[1] + 1 # argmax + offset to match Google's Tensorflow + Inception 1001 class ids denoise_outputs.append(labels.data.cpu().numpy()) denoise_outputs = np.concatenate(denoise_outputs, axis=0) random_outputs = np.concatenate(random_outputs, axis=0) filenames = dataset.filenames() filenames = [ os.path.basename(ii) for ii in filenames ] labels_denoise.update(dict(zip(filenames, denoise_outputs))) labels_random.update(dict(zip(filenames, random_outputs))) # diff filtering print('diff filtering...') if (len(labels_denoise) == len(labels_random)): # initializing final_labels = labels_denoise # Compare diff_index = [ii for ii in labels_denoise if labels_random[ii] != labels_denoise[ii]] if (len(diff_index) != 0): # print(diff_index) for index in diff_index: final_labels[index] = 0 else: print("Error: Number of labels returned by two defenses doesn't match") exit(-1) elapsed_time = time.time() - start_time print('elapsed time: {0:.0f} [s]'.format(elapsed_time)) with open(args.output_file, 'w') as out_file: for filename, label in final_labels.items(): kmean = auxkmean(64, 10) kmean.importmodel() kmean_img = args.input_dir + '/' + filename kmean_label = kmean.compare(kmean_img,label) out_file.write('{0},{1}\n'.format(filename, kmean_label))
def main(): start_time = time.time() args = parser.parse_args() if not os.path.exists(args.input_dir): print("Error: Invalid input folder %s" % args.input_dir) exit(-1) if not args.output_dir: print("Error: Please specify an output directory") exit(-1) trans_forms = transforms.Compose([ transforms.Resize([299,299]), transforms.ToTensor() ]) with torch.no_grad(): mean_torch = autograd.Variable(torch.from_numpy(np.array([0.485, 0.456, 0.406]).reshape([1,3,1,1]).astype('float32')).cuda()) std_torch = autograd.Variable(torch.from_numpy(np.array([0.229, 0.224, 0.225]).reshape([1,3,1,1]).astype('float32')).cuda()) mean_tf = autograd.Variable(torch.from_numpy(np.array([0.5, 0.5, 0.5]).reshape([1,3,1,1]).astype('float32')).cuda()) std_tf = autograd.Variable(torch.from_numpy(np.array([0.5, 0.5, 0.5]).reshape([1,3,1,1]).astype('float32')).cuda()) dataset = Dataset(args.input_dir, transform=trans_forms) #loader = data.DataLoader(dataset, batch_size=args.batch_size, shuffle=False) loader = data.DataLoader(dataset, batch_size=1, shuffle=False) config, resmodel = get_model1() config, inresmodel = get_model2() config, incepv3model = get_model3() config, rexmodel = get_model4() net1 = resmodel.net net2 = inresmodel.net net3 = incepv3model.net net4 = rexmodel.net checkpoint = torch.load('denoise_res_015.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: resmodel.load_state_dict(checkpoint['state_dict']) else: resmodel.load_state_dict(checkpoint) checkpoint = torch.load('denoise_inres_014.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: inresmodel.load_state_dict(checkpoint['state_dict']) else: inresmodel.load_state_dict(checkpoint) checkpoint = torch.load('denoise_incepv3_012.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: incepv3model.load_state_dict(checkpoint['state_dict']) else: incepv3model.load_state_dict(checkpoint) checkpoint = torch.load('denoise_rex_001.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: rexmodel.load_state_dict(checkpoint['state_dict']) else: rexmodel.load_state_dict(checkpoint) if not args.no_gpu: inresmodel = inresmodel.cuda() resmodel = resmodel.cuda() incepv3model = incepv3model.cuda() rexmodel = rexmodel.cuda() inresmodel.eval() resmodel.eval() incepv3model.eval() rexmodel.eval() outputs = [] filenames = dataset.filenames() all_images_taget_class = load_target_class(args.input_dir) #print('filenames = {0}'.format(filenames)) for batch_idx, (input, _) in enumerate(loader): #print('input = {0}'.format(input.data.numpy().shape)) #print('batch_idx = {0}'.format(batch_idx)) filenames_batch = get_filenames_batch(filenames, batch_idx, args.batch_size) filenames_batch = [n.split(r"/")[-1] for n in filenames_batch] print('filenames = {0}'.format(filenames_batch)) target_class_for_batch = ( [all_images_taget_class[n] - 1 for n in filenames_batch] + [0] * (args.batch_size - len(filenames_batch))) # all_images_taget_class[n] - 1 to match imagenet label 1001 classes print('target_class_for_batch = {0}'.format(target_class_for_batch)) #labels1 = net1(input_torch,True)[-1] #labels2 = net2(input_tf,True)[-1] #labels3 = net3(input_tf,True)[-1] #labels4 = net4(input_torch,True)[-1] #labels = (labels1+labels2+labels3+labels4).max(1)[1] + 1 # argmax + offset to match Google's Tensorflow + Inception 1001 class ids #print('labels1.shape = ', labels1.data.cpu().numpy().shape) # looks like labels1.data.cpu().numpy can be used as logits #print('labels1', labels1.data.cpu().numpy()) loss = nn.CrossEntropyLoss() #label = 924 step_alpha = 0.01 eps = args.max_epsilon / 255.0 # input in now in [0, 1] target_label = torch.Tensor(target_class_for_batch).long().cuda() #print('input.cpu().numpy().amax = {0}'.format(np.amax(input.cpu().numpy()))) #1.0 #print('input.cpu().numpy().amin = {0}'.format(np.amin(input.cpu().numpy()))) #0.0 #raise ValueError('hold') if not args.no_gpu: input = input.cuda() input_var = autograd.Variable(input, requires_grad=True) orig_images = input.cpu().numpy() y = autograd.Variable(target_label) for step in range(args.num_iter): input_tf = (input_var-mean_tf)/std_tf input_torch = (input_var - mean_torch)/std_torch #input_tf = autograd.Variable(input_tf, requires_grad=True) #input_torch = autograd.Variable(input_torch, requires_grad=True) zero_gradients(input_tf) zero_gradients(input_torch) out = net1(input_torch,True)[-1] out += net2(input_tf,True)[-1] out += net3(input_tf,True)[-1] out += net4(input_torch,True)[-1] pred = out.max(1)[1] + 1 if step % 10 == 0: print('pred = {0}'.format(pred)) _loss = loss(out, y) #_loss = autograd.Variable(_loss) _loss.backward() #print('type of input = ', type(input_torch)) #print('type of input.grad = ', type(input_torch.grad)) normed_grad = step_alpha * torch.sign(input_var.grad.data) step_adv = input_var.data - normed_grad adv = step_adv - input.data adv = torch.clamp(adv, -eps, eps) result = input.data + adv result = torch.clamp(result, 0, 1.0) input_var.data = result adv_image = result.cpu().numpy() #_ = _get_diff_img(adv_image, orig_images) # check max diff save_images(adv_image, get_filenames_batch(filenames, batch_idx, args.batch_size), args.output_dir) elapsed_time = time.time() - start_time print('elapsed time: {0:.0f} [s]'.format(elapsed_time))
def main(_): print('Loading denoise...') with torch.no_grad(): config, resmodel = get_model1() config, inresmodel = get_model2() config, incepv3model = get_model3() config, rexmodel = get_model4() net1 = resmodel.net net2 = inresmodel.net net3 = incepv3model.net net4 = rexmodel.net checkpoint = torch.load('denoise_res_015.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: resmodel.load_state_dict(checkpoint['state_dict']) else: resmodel.load_state_dict(checkpoint) checkpoint = torch.load('denoise_inres_014.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: inresmodel.load_state_dict(checkpoint['state_dict']) else: inresmodel.load_state_dict(checkpoint) checkpoint = torch.load('denoise_incepv3_012.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: incepv3model.load_state_dict(checkpoint['state_dict']) else: incepv3model.load_state_dict(checkpoint) checkpoint = torch.load('denoise_rex_001.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: rexmodel.load_state_dict(checkpoint['state_dict']) else: rexmodel.load_state_dict(checkpoint) inresmodel = inresmodel.cuda() resmodel = resmodel.cuda() incepv3model = incepv3model.cuda() rexmodel = rexmodel.cuda() inresmodel.eval() resmodel.eval() incepv3model.eval() rexmodel.eval() # random padding print('Loading random padding...') print('Iteration: %d' % FLAGS.itr_time) batch_shape = [FLAGS.batch_size, FLAGS.image_height, FLAGS.image_width, 3] num_classes = 1001 tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default(): # Prepare graph x_input = tf.placeholder(tf.float32, shape=batch_shape) img_resize_tensor = tf.placeholder(tf.int32, [2]) x_input_resize = tf.image.resize_images(x_input, img_resize_tensor, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) shape_tensor = tf.placeholder(tf.int32, [3]) padded_input = padding_layer_iyswim(x_input_resize, shape_tensor) # 330 is the last value to keep 8*8 output, 362 is the last value to keep 9*9 output, stride = 32 padded_input.set_shape( (FLAGS.batch_size, FLAGS.image_resize, FLAGS.image_resize, 3)) with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope()): _, end_points = inception_resnet_v2.inception_resnet_v2( padded_input, num_classes=num_classes, is_training=False, create_aux_logits=True) predicted_labels = tf.argmax(end_points['Predictions'], 1) # Run computation saver = tf.train.Saver(slim.get_model_variables()) session_creator = tf.train.ChiefSessionCreator( scaffold=tf.train.Scaffold(saver=saver), checkpoint_filename_with_path=FLAGS.checkpoint_path, master=FLAGS.master) with tf.train.MonitoredSession(session_creator=session_creator) as sess: ''' watch the input dir for defense ''' observer = Observer() event_handler = FileEventHandler(batch_shape=batch_shape, sess=sess, end_points=end_points, x_input=x_input, img_resize_tensor=img_resize_tensor, shape_tensor=shape_tensor, output_dir=FLAGS.output_dir, itr=FLAGS.itr_time, img_resize=FLAGS.image_resize, net1=net1, net4=net4) observer.schedule(event_handler, FLAGS.input_dir, recursive=True) observer.start() print("watchdog start...") try: while True: time.sleep(0.5) except KeyboardInterrupt: observer.stop() observer.join() print("\nwatchdog stoped!")
def main(): args = parser.parse_args() if not os.path.exists(args.input_dir): print("Error: Invalid input folder %s" % args.input_dir) exit(-1) if not args.output_file: print("Error: Please specify an output file") exit(-1) tf = transforms.Compose( [transforms.Scale([299, 299]), transforms.ToTensor()]) mean_torch = autograd.Variable( torch.from_numpy( np.array([0.485, 0.456, 0.406]).reshape([1, 3, 1, 1]).astype('float32')).cuda()) std_torch = autograd.Variable( torch.from_numpy( np.array([0.229, 0.224, 0.225]).reshape([1, 3, 1, 1]).astype('float32')).cuda()) mean_tf = autograd.Variable( torch.from_numpy( np.array([0.5, 0.5, 0.5]).reshape([1, 3, 1, 1]).astype('float32')).cuda()) std_tf = autograd.Variable( torch.from_numpy( np.array([0.5, 0.5, 0.5]).reshape([1, 3, 1, 1]).astype('float32')).cuda()) dataset = Dataset(args.input_dir, transform=tf) loader = data.DataLoader(dataset, batch_size=1, shuffle=False) config, resmodel = get_model1() config, inresmodel = get_model2() config, incepv3model = get_model3() config, rexmodel = get_model4() net1 = resmodel.net net2 = inresmodel.net net3 = incepv3model.net net4 = rexmodel.net checkpoint = torch.load('denoise_res_015.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: resmodel.load_state_dict(checkpoint['state_dict']) else: resmodel.load_state_dict(checkpoint) checkpoint = torch.load('denoise_inres_014.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: inresmodel.load_state_dict(checkpoint['state_dict']) else: inresmodel.load_state_dict(checkpoint) checkpoint = torch.load('denoise_incepv3_012.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: incepv3model.load_state_dict(checkpoint['state_dict']) else: incepv3model.load_state_dict(checkpoint) checkpoint = torch.load('denoise_rex_001.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: rexmodel.load_state_dict(checkpoint['state_dict']) else: rexmodel.load_state_dict(checkpoint) if not args.no_gpu: inresmodel = inresmodel.cuda() resmodel = resmodel.cuda() incepv3model = incepv3model.cuda() rexmodel = rexmodel.cuda() inresmodel.eval() resmodel.eval() incepv3model.eval() rexmodel.eval() xent = torch.nn.CrossEntropyLoss() filenames = dataset.filenames() targets = [] outputs = [] for i, (input, _) in enumerate(loader): orig = input.numpy() print(orig.shape) adv = np.copy(orig) lower = np.clip(orig - 4.0 / 255.0, 0, 1) upper = np.clip(orig + 4.0 / 255.0, 0, 1) target_label = np.random.randint(0, 1000) targets.append(target_label) target = autograd.Variable( torch.LongTensor(np.array([target_label - 1])).cuda()) print('image %d of %d' % (i + 1, len(filenames))) for step in range(100): # XXX this usually finishes in a very small number of steps, and we # could return early in those cases, but I'm too lazy to write the # two lines of code it would take to do this input_var = autograd.Variable(torch.FloatTensor(adv).cuda(), requires_grad=True) input_tf = (input_var - mean_tf) / std_tf input_torch = (input_var - mean_torch) / std_torch #clean1 = net1.denoise[0](input_torch) #clean2 = net2.denoise[0](input_tf) #clean3 = net3.denoise(input_tf) #labels1 = net1(clean1,False)[-1] #labels2 = net2(clean2,False)[-1] #labels3 = net3(clean3,False)[-1] labels1 = net1(input_torch, True)[-1] labels2 = net2(input_tf, True)[-1] labels3 = net3(input_tf, True)[-1] labels4 = net4(input_torch, True)[-1] labels = (labels1 + labels2 + labels3 + labels4) loss = xent(labels, target) loss.backward() adv = adv - 1.0 / 255.0 * np.sign( input_var.grad.data.cpu().numpy()) adv = np.clip(adv, lower, upper) labels = (labels1 + labels2 + labels3 + labels4).max( 1 )[1] + 1 # argmax + offset to match Google's Tensorflow + Inception 1001 class ids print(' step = %d, loss = %g, target = %d, label = %d' % (step + 1, loss, target_label, labels)) outputs.append(labels.data.cpu().numpy()) name = os.path.splitext(os.path.basename(filenames[i]))[0] + '.png' out_path = os.path.join(args.output_dir, name) scipy.misc.imsave(out_path, np.transpose(adv[0], (1, 2, 0))) outputs = np.concatenate(outputs, axis=0) with open(args.output_file, 'w') as out_file: for filename, target, label in zip(filenames, targets, outputs): filename = os.path.basename(filename) out_file.write('{0},{1},{2}\n'.format(filename, target, label))
def main(): start_time = time.time() args = parser.parse_args() if not os.path.exists(args.input_dir): print("Error: Invalid input folder %s" % args.input_dir) exit(-1) if not args.output_file: print("Error: Please specify an output file") exit(-1) tf = transforms.Compose( [transforms.Resize([299, 299]), transforms.ToTensor()]) tf_flip = transforms.Compose([ transforms.ToPILImage(), transforms.RandomHorizontalFlip(p=0.5), transforms.ToTensor() ]) tf_shrink = transforms.Compose([ transforms.ToPILImage(), transforms.Resize([299, 299]), transforms.ToTensor() ]) with torch.no_grad(): mean_torch = autograd.Variable( torch.from_numpy( np.array([0.485, 0.456, 0.406]).reshape([1, 3, 1, 1]).astype('float32')).cuda()) std_torch = autograd.Variable( torch.from_numpy( np.array([0.229, 0.224, 0.225]).reshape([1, 3, 1, 1]).astype('float32')).cuda()) mean_tf = autograd.Variable( torch.from_numpy( np.array([0.5, 0.5, 0.5]).reshape([1, 3, 1, 1]).astype('float32')).cuda()) std_tf = autograd.Variable( torch.from_numpy( np.array([0.5, 0.5, 0.5]).reshape([1, 3, 1, 1]).astype('float32')).cuda()) dataset = Dataset(args.input_dir, transform=tf) loader = data.DataLoader(dataset, batch_size=args.batch_size, shuffle=False) config, resmodel = get_model1() config, inresmodel = get_model2() config, incepv3model = get_model3() config, rexmodel = get_model4() net1 = resmodel.net net2 = inresmodel.net net3 = incepv3model.net net4 = rexmodel.net checkpoint = torch.load('denoise_res_015.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: resmodel.load_state_dict(checkpoint['state_dict']) else: resmodel.load_state_dict(checkpoint) checkpoint = torch.load('denoise_inres_014.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: inresmodel.load_state_dict(checkpoint['state_dict']) else: inresmodel.load_state_dict(checkpoint) checkpoint = torch.load('denoise_incepv3_012.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: incepv3model.load_state_dict(checkpoint['state_dict']) else: incepv3model.load_state_dict(checkpoint) checkpoint = torch.load('denoise_rex_001.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: rexmodel.load_state_dict(checkpoint['state_dict']) else: rexmodel.load_state_dict(checkpoint) if not args.no_gpu: inresmodel = inresmodel.cuda() resmodel = resmodel.cuda() incepv3model = incepv3model.cuda() rexmodel = rexmodel.cuda() inresmodel.eval() resmodel.eval() incepv3model.eval() rexmodel.eval() outputs = [] iter = args.iteration # print(iter) for batch_idx, (input, _) in enumerate(loader): # print(input.size()) length_input, _, _, _ = input.size() iter_labels = np.zeros([length_input, 1001, iter]) for j in range(iter): # random fliping input0 = batch_transform(input, tf_flip, 299) # random resizing resize_shape_ = random.randint(310, 331) image_resize = 331 tf_rand_resize = transforms.Compose([ transforms.ToPILImage(), transforms.Resize([resize_shape_, resize_shape_]), transforms.ToTensor() ]) input1 = batch_transform(input0, tf_rand_resize, resize_shape_) # ramdom padding shape = [ random.randint(0, image_resize - resize_shape_), random.randint(0, image_resize - resize_shape_), image_resize ] # print(shape) new_input = padding_layer_iyswim(input1, shape, tf_shrink) #print(type(new_input)) if not args.no_gpu: new_input = new_input.cuda() with torch.no_grad(): input_var = autograd.Variable(new_input) input_tf = (input_var - mean_tf) / std_tf input_torch = (input_var - mean_torch) / std_torch labels1 = net1(input_torch, True)[-1] labels2 = net2(input_tf, True)[-1] labels3 = net3(input_tf, True)[-1] labels4 = net4(input_torch, True)[-1] labels = (labels1 + labels2 + labels3 + labels4).max( 1 )[1] + 1 # argmax + offset to match Google's Tensorflow + Inception 1001 class ids labels_index = labels.data.tolist() #if (len(labels_index) % args.batch_size != 0): # zeros = [0]* (args.batch_size - len(labels_index) % args.batch_size) # labels_index = labels_index + zeros print(len(labels_index)) #iter_labels[range(len(iter_labels)),m, j] = 1 for m in labels_index iter_labels[range(len(iter_labels)), labels_index, j] = 1 final_labels = np.sum(iter_labels, axis=-1) labels = np.argmax(final_labels, 1) print(labels) outputs.append(labels) outputs = np.concatenate(outputs, axis=0) with open(args.output_file, 'w') as out_file: filenames = dataset.filenames() for filename, label in zip(filenames, outputs): filename = os.path.basename(filename) out_file.write('{0},{1}\n'.format(filename, label)) elapsed_time = time.time() - start_time print('elapsed time: {0:.0f} [s]'.format(elapsed_time))
def main(): args = parser.parse_args() if not os.path.exists(args.input_dir): print("Error: Invalid input folder %s" % args.input_dir) exit(-1) if not os.path.exists(args.output_dir): print("Error: Invalid output folder %s" % args.output_dir) exit(-1) with torch.no_grad(): config, resmodel = get_model1() #config, inresmodel = get_model2() #config, incepv3model = get_model3() config, rexmodel = get_model4() net1 = resmodel.net #net2 = inresmodel.net #net3 = incepv3model.net net4 = rexmodel.net checkpoint = torch.load('denoise_res_015.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: resmodel.load_state_dict(checkpoint['state_dict']) else: resmodel.load_state_dict(checkpoint) #checkpoint = torch.load('denoise_inres_014.ckpt') #if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: #inresmodel.load_state_dict(checkpoint['state_dict']) #else: #inresmodel.load_state_dict(checkpoint) #checkpoint = torch.load('denoise_incepv3_012.ckpt') #if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: #incepv3model.load_state_dict(checkpoint['state_dict']) #else: #incepv3model.load_state_dict(checkpoint) checkpoint = torch.load('denoise_rex_001.ckpt') if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: rexmodel.load_state_dict(checkpoint['state_dict']) else: rexmodel.load_state_dict(checkpoint) if not args.no_gpu: #inresmodel = inresmodel.cuda() resmodel = resmodel.cuda() #incepv3model = incepv3model.cuda() rexmodel = rexmodel.cuda() #inresmodel.eval() resmodel.eval() #incepv3model.eval() rexmodel.eval() #inceptionresnetv2 for ramdon padding model = inceptionresnetv2(num_classes=1001, pretrained='imagenet+background') model = model.cuda() model.eval() # Load kmean kmean = auxkmean(64, 10) kmean.importmodel() ''' watch the input dir for defense ''' observer = Observer() event_handler = FileEventHandler(batch_size=args.batch_size, input_dir=args.input_dir, net1=net1, net4=net4, model=model, itr=args.itr, output_dir=args.output_dir, no_gpu=args.no_gpu, kmean=kmean) observer.schedule(event_handler, args.input_dir, recursive=True) observer.start() print("watchdog start...") try: while True: time.sleep(0.5) except KeyboardInterrupt: observer.stop() observer.join() print("\nwatchdog stoped!")