def PoW(block, zBits=1, interruptOnChange=("", 0)): """ Find a salt for which the md5 hash ends with zBits null block: bytearray of data zBits: number of ending null bits return [block|salt] """ import random from ressources import config as c if interruptOnChange[0]: originalData = getattr(locals()["c"], interruptOnChange[0])[interruptOnChange[1]].copy() if zBits >= 255: raise ValueError("The number of zero bits must be lower than 2^8") salt = 1 H = sponge(block + bm.mult_to_bytes(salt), 256) while not nullBits(H, zBits): if interruptOnChange[0]: if originalData != getattr(locals()["c"], interruptOnChange[0])[interruptOnChange[1]]: return False salt = random.randint(0, 1 << 32) H = sponge(block + bm.mult_to_bytes(salt), 256) return bm.mult_to_bytes(salt)
def invertGalois2(toInv: object): """ Invert given {array of bits, bytes, int} in GF() ! You need to initialize the Galois_Field before ! ! You need to have a dictionary file available ! Output: bytes """ d = int(config.DEGREE / 8) toInv = bm.mult_to_bytes(toInv) if config.GALOIS_WATCH or config.IN_CREATION: config.WATCH_INVERSION_NUMBER += 1 exTime = time.time() # A(x) . A(x)^-1 congruent to 1 mod P(x) # where P(x) irreductible polynomial of given degree # A ^ p^n - 2 = inverted inv = poly_exp_mod_2(bm.bytes_to_int(toInv), config.NBR_ELEMENTS - 2, config.IRRED_POLYNOMIAL) inv = inv.to_bytes(bm.bytes_needed(inv), "big") config.WATCH_GLOBAL_INVERSION += time.time() - exTime else: inv = config.INVERSIONS_BOX[bm.bytes_to_int(toInv)] return bm.zfill_b(inv, d)
def verifying(M: bytes, sign: int, pK: tuple = None): """ Verify given signature of message M with corresponding public key's. """ assert isinstance(M, (bytes, bytearray)) from ..hashbased import hashFunctions as hashF if not pK: pK = it.extractKeyFromFile("public_key") size = it.getKeySize(pK) hm = hashF.sponge(M, size) # base64 to int hm = bm.bytes_to_int(bm.mult_to_bytes(hm)) # If the signature is in base64 if not isinstance(sign, int): sign = it.getIntKey(sign) n, e = pK # raises the signature to the power of e (modulo n) # (as when encrypting a message) if sign > n: print("Signature > modulus") test = ut.square_and_multiply(sign, e, n) if test == (hm % n): return True return False
def IV(arr, key="y/B?E(H+MbQeThVm".encode()): """ The IV must, in addition to being unique, be unpredictable at encryption time. Return a 8 bytes array. """ # Select a random encrypted message as initial vector to transform. import secrets as sr r1 = sr.randbelow(len(arr)) r2 = sr.randbits(8) message = bm.bytes_to_int(arr[r1]) ^ r2 message = bm.mult_to_bytes(message) # Let's use the principle of hmac # The basic idea is to concatenate the key and the message, and hash them together. # https://pymotw.com/3/hmac/ import hmac import hashlib # Default algorithm for hmac is MD5, it's not the most secure # so let's use SHA-1 digest_maker = hmac.new(key, message, hashlib.sha1) digest = digest_maker.hexdigest() return bytearray(bytes.fromhex(digest)[:8])
def signing(M: bytes, privateK: tuple = None, saving: bool = False, Verbose: bool = False): """ Signing the message (M). You need to attach this signature to the message. """ assert isinstance(M, bytes) from ..hashbased import hashFunctions as hashF if not privateK: privateK = it.extractKeyFromFile("private_key") size = it.getKeySize(privateK) # Get key size if Verbose: print("Hashing in progress...") hm = hashF.sponge(M, size) # base64 to int hm = bm.bytes_to_int(bm.mult_to_bytes(hm)) if Verbose: print(f"hm = {hm}") print("Hashing done.\n") # raises it to the power of d (modulo n) # same thing as decrypting n, d = privateK sign = ut.square_and_multiply(hm, d, n) if saving: sign = it.writeKeytoFile(sign, "RSA_signature") return sign
def verifying(M: bytes, sign: tuple, publicKey: tuple = None): """ Verify given signature of message M with corresponding public key's. """ assert isinstance(M, (bytes, bytearray)) from ..hashbased import hashFunctions as hashF if not publicKey: publicKey = it.extractKeyFromFile("public_key") p, g, h = publicKey size = it.getKeySize(publicKey) hm = hashF.sponge(M, size) hm = bm.bytes_to_int(bm.mult_to_bytes(hm)) if not isinstance(sign, tuple): b64data = sign sign = it.getIntKey(b64data[1:], b64data[0]) s1, s2 = sign if (0 < s1 < p) and (0 < s2 < p - 1): test1 = (ut.square_and_multiply(h, s1, p) * ut.square_and_multiply(s1, s2, p)) % p test2 = ut.square_and_multiply(g, hm, p) if test1 == test2: return True return False raise ValueError
def signing(M: bytes, privateK: tuple = None, saving: bool = False, Verbose: bool = False): """ Signing a message M (bytes). """ from ..hashbased import hashFunctions as hashF # y choosed randomly between 1 and p-2 with condition than y coprime to p-1 if not privateK: privateK = it.extractKeyFromFile("private_key") p, g, x = privateK size = it.getKeySize(privateK) # M = bm.fileToBytes(M) # M = "Blablabla".encode() if Verbose: print("Hashing in progress...") hm = hashF.sponge(M, size) # #base64 to int hm = bm.bytes_to_int(bm.mult_to_bytes(hm)) if Verbose: print("Hashing done.\n") p1 = p - 1 k = rd.randrange(2, p - 2) while not ut.coprime(k, p1): k = rd.randrange(2, p - 2) if Verbose: print(f"Your secret integer is: {k}") s1 = ut.square_and_multiply(g, k, p) s2 = (multGroup.inv(k, p1) * (hm - x * s1)) % p1 # In the unlikely event that s2 = 0 start again with a different random k. if s2 == 0: if Verbose: print("Unlikely, s2 is equal to 0. Restart signing...") signing(M, privateK, saving, Verbose) else: sign = (s1, s2) if saving: sign = it.writeKeytoFile(sign, "elG_signature") return sign
def process(cipherT): c1, c2 = cipherT s1 = ut.square_and_multiply(c1, p - 1 - x, p) # This calculation produces the original message m = (c2 * s1) % p return bm.mult_to_bytes(m)
def pad(N, r): iN = bm.bytes_to_int(N) lN = int.bit_length(iN) # Number of 0 to add b = (r - ((lN + 3) % r)) % r # Padding using the SHA-3 pattern 10*1: a 1 bit, followed by zero or more 0 bits (maximum r − 1) and a final 1 bit. op = ((iN | (1 << b + lN + 1)) << 1) ^ 1 return bm.mult_to_bytes(op)
def genInverses2(): """Generates a list of elements and their respective inverses.""" print("\n\t || Inverses are going to be generated || \n") config.IN_CREATION = True config.INVERSIONS_BOX = [ invertGalois2(bm.mult_to_bytes(elt)) for elt in config.ELEMENTS ] it.writeVartoFile(config.INVERSIONS_BOX, "inversion_Sbox") config.IN_CREATION = False print("\n\t || Inverses are generated || \n")
def GF2(degree): """Initialize the Galois Field GF(p^degree) in Zn.""" config.DEGREE = degree config.NBR_ELEMENTS = 2**degree config.IRRED_POLYNOMIAL = int.from_bytes( bm.mult_to_bytes(config.IRRED_POLYNOMIAL), "big") config.GENERATOR = gen_GL_2(config.IRRED_POLYNOMIAL, degree) it.handleInvBox() if config.IN_CREATION: start = time.time() while config.IN_CREATION: it.clear() print(" --- Wait for the creation please --- ") print((" --- Time elapsed: {:.1f} seconds").format(time.time() - start)) time.sleep(1)
def getB64Keys(key): """ Received in input key in tuple, bytes, list etc. and return key in base64. """ import base64 if isinstance(key, tuple): tw = bytearray() sizes = [] for k in key: s = bm.bytes_needed(k) sizes.append(s) # Put the size into the coded b64 tw += s.to_bytes(2, "big") for i, k in enumerate(key): tw += k.to_bytes(sizes[i], "big") elif isinstance(key, list): # E.g, ElGamal with M >= p (longer message) e = [getB64Keys(el) for el in key] tw = "" for el in e: tw += f"{el}|" tw = tw[:-1].encode() elif isinstance(key, bytes): # Already into bytes tw = key else: # uniq key tw = bm.mult_to_bytes(key) return base64.b64encode(tw).decode()
def md5(block): """ Return md5 hash block: bytearray of data to hash """ import math # Done using the Wikipedia algorithm def iToB(i): return int.to_bytes(i, 4, "little") def p32(a, b): return (a + b) % (1 << 32) s = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] K = [] for i in range(64): K.append((math.floor(2 ** 32 * abs(math.sin(i + 1)))) % (1 << 32)) iN = bm.bytes_to_int(block) lN = len(block) * 8 # Number of 0 to add b = 512 - ((lN + 1) % 512) lN = int.from_bytes(lN.to_bytes(8, byteorder="little"), byteorder="big", signed=False) iN = (((iN << 1) | 1) << b) ^ lN block = bm.mult_to_bytes(iN) b512 = bm.splitBytes(block, 64) h1 = 0x67452301 h2 = 0xEFCDAB89 h3 = 0x98BADCFE h4 = 0x10325476 for b5 in b512: blocks = bm.splitBytes(b5, 4) A = h1 B = h2 C = h3 D = h4 for i in range(64): if i <= 15: F = (B & C) | (~B & D) g = i elif i <= 31: F = (D & B) | (~D & C) g = (5 * i + 1) % 16 elif i <= 47: F = B ^ C ^ D g = (3 * i + 5) % 16 else: # C xor (B or (not D)) F = C ^ (B | ~D) % (1 << 32) g = (7 * i) % 16 # F + A + K[i] + M[g] try: F = p32(p32(p32(F, A), K[i]), int.from_bytes(blocks[g], "little")) except IndexError: print(i, K, blocks[g]) raise Exception("Error") A = D D = C C = B # B + leftrotate(F, s[i]) B = p32(B, ((F << s[i]) | (F >> (32 - s[i])))) h1 = p32(A, h1) h2 = p32(B, h2) h3 = p32(C, h3) h4 = p32(D, h4) return bm.packSplittedBytes([iToB(h1), iToB(h2), iToB(h3), iToB(h4)])
def process(cipherT): un = ut.square_and_multiply(cipherT, d, n) return bm.mult_to_bytes(un)