# print("*************************************") # print(p1_rt.print_results()) # The O(n·v(amax)) dynamic programming algorithm from the textbook based on the MinCost version of the problem. min_cost_results = min_cost(k_instances) print("\n\nMIN COST ALGORITHM") print("*************************************") print(str(min_cost_results)) # p2_e = Totals(numpy.divide(min_cost_results.efficacy.eff, # optimal_dynamic_programming_results.efficacy.eff)) # # p2_rt = Totals(numpy.divide(min_cost_results.running_time.eff, # optimal_dynamic_programming_results.running_time.eff)) p2_e = Totals(min_cost_results.efficacy.eff) p2_rt = Totals(min_cost_results.running_time.eff) print("\nQuality of Solutions") print("*************************************") print(p2_e.print_results()) print("\nQuality of Running Time") print("*************************************") print(p2_rt.print_results()) # The greedy 2-approximation from the textbook. greedy_two_approximation_results = greedy_two_approximation(k_instances) print("\n\nGREEDY TWO APPROXIMATION ALGORITHM") print("*************************************") print(str(greedy_two_approximation_results))