import nn import preprocessing from dictionary import * from predicate_nn import bag_of_words DICT_FILE = '{}predicate/dats/dict_predicate.dat'.format(path) WEIGHTS_FILE = '{}predicate/dats/weights_predicate.dat'.format(path) d = DictionaryC() d.load(DICT_FILE) network = nn.Net() network.load(WEIGHTS_FILE) predicate = lambda text, res : 'http://dbpedia.org/ontology/{}'.format(vec_to_class(network.net(bag_of_words(preprocessing.full(text), d.dictionary)), d.classes)) import sys sys.path.insert(0, path) import app_template import return_template configfile = "{}predicate/predicate.conf".format(path) aboutendpoint = "/about" healthendpoint = "/health" data_type = 'predicate' asks = [] blueprint = return_template.service(predicate, asks, data_type, configfile).relation_clf app_template.app(configfile, aboutendpoint, healthendpoint, blueprint)
print('APP_Object') path = '/home/students/stalknia/Papka/apps/' import sparql objectt = lambda text, res : sparql.get(res[0], res[1]) import sys sys.path.insert(0, path) import app_template import return_template configfile = "{}object/object.conf".format(path) aboutendpoint = "/about" healthendpoint = "/health" data_type = 'result' asks = ['subject', 'predicate'] blueprint = return_template.service(objectt, asks, data_type, configfile).relation_clf app_template.app(configfile, aboutendpoint, healthendpoint, blueprint)