def test_render_numpy(): """Save data to numpy binary.""" arr = np.random.randint(0, 255, size=(3, 512, 512), dtype=np.uint8) mask = np.zeros((512, 512), dtype=np.uint8) res = utils.render(arr, mask=mask, img_format="npy") arr_res = np.load(BytesIO(res)) assert arr_res.shape == (4, 512, 512) np.array_equal(arr, arr_res[0:3]) np.array_equal(mask, arr_res[-1]) res = utils.render(arr, img_format="npy") arr_res = np.load(BytesIO(res)) assert arr_res.shape == (3, 512, 512) np.array_equal(arr, arr_res) res = utils.render(arr, img_format="npz") arr_res = np.load(BytesIO(res)) assert arr_res.files == ["data"] assert arr_res["data"].shape == (3, 512, 512) np.array_equal(arr, arr_res["data"]) res = utils.render(arr, mask, img_format="npz") arr_res = np.load(BytesIO(res)) assert arr_res.files == ["data", "mask"] assert arr_res["data"].shape == (3, 512, 512) assert arr_res["mask"].shape == (512, 512) np.array_equal(arr, arr_res["data"]) np.array_equal(mask, arr_res["mask"])
def tiftile(): x = request.args.get('x') y = request.args.get('y') z = request.args.get('z') tifName = request.args.get('tname') tifPath1 = "d:\\data\\3010\\{}.tif".format(tifName) try: dataset = rasterio.open(tifPath1) tile, mask = reader.tile(dataset, int(x), int(y), int(z), tilesize=256) dataset.close() min = 0 max = 60 renderData = np.array([tile[0], tile[1]+tile[2]*0.3, tile[2]]) renderData = renderData.astype(np.uint8) mtdata = to_math_type(renderData) data = sigmoidal(mtdata, 10, 0.15)*255 buffer = render(data.astype(np.uint8), mask=mask) return send_file(io.BytesIO(buffer), mimetype="image/png", attachment_filename="{}_{}_{}.jpg".format(x, y, z)) except Exception as a: print(a) return abort(404) finally: pass
def reformat( data: numpy.ndarray, mask: numpy.ndarray, img_format: ImageType, colormap: Optional[Dict[int, Tuple[int, int, int, int]]] = None, transform: Optional[affine.Affine] = None, crs: Optional[CRS] = None, ): """Reformat image data to bytes""" if img_format == ImageType.npy: sio = BytesIO() numpy.save(sio, (data, mask)) sio.seek(0) content = sio.getvalue() else: driver = drivers[img_format.value] options = img_profiles.get(driver.lower(), {}) if transform and crs and ImageType.tif in img_format: options = {"crs": crs, "transform": transform} content = render(data, mask, img_format=driver, colormap=colormap, **options) return content
def _img( mosaicid: str = None, z: int = None, x: int = None, y: int = None, scale: int = 1, ext: str = None, url: str = None, pixel_selection: str = "first", resampling_method: str = "nearest", ) -> Tuple: """Handle tile requests.""" if not mosaicid and not url: return ("NOK", "text/plain", "Missing 'MosaicID or URL' parameter") mosaic_path = _create_mosaic_path(mosaicid) if mosaicid else url with MosaicBackend(mosaic_path) as mosaic: assets = mosaic.tile(x, y, z) if not assets: return ("EMPTY", "text/plain", f"No assets found for tile {z}-{x}-{y}") tilesize = 256 * scale if pixel_selection == "last": pixel_selection = "first" assets = list(reversed(assets)) with rasterio.Env(aws_session): pixsel_method = PIXSEL_METHODS[pixel_selection] tile, mask = mosaic_tiler( assets, x, y, z, usgs_tiler, tilesize=tilesize, pixel_selection=pixsel_method(), resampling_method=resampling_method, ) if tile is None: return ("EMPTY", "text/plain", "empty tiles") if not ext: ext = "jpg" if mask.all() else "png" driver = "jpeg" if ext == "jpg" else ext options = img_profiles.get(driver, {}) if ext == "tif": ext = "tiff" driver = "GTiff" options = geotiff_options(x, y, z, tilesize) return ( "OK", f"image/{ext}", render(tile, mask, img_format=driver, **options), )
def test_render_valid_colormapDict(): """Create 'colormaped' PNG image buffer from one band array using discrete cmap.""" arr = np.random.randint(0, 255, size=(1, 512, 512), dtype=np.uint8) cmap = { 1: [255, 255, 255, 255], 50: [255, 255, 0, 255], 100: [255, 0, 0, 255], 150: [0, 0, 255, 255], } assert utils.render(arr, colormap=cmap)
def reformat( data: numpy.ndarray, mask: numpy.ndarray, img_format: ImageType, colormap: Optional[Dict[int, Tuple[int, int, int, int]]] = None, transform: Optional[affine.Affine] = None, crs: Optional[CRS] = None, ): """Reformat image data to bytes""" driver = drivers[img_format.value] options = img_profiles.get(driver.lower(), {}) if transform and crs and ImageType.tif in img_format: options = {"crs": crs, "transform": transform} return render(data, mask, img_format=driver, colormap=colormap, **options)
def _img( z: int = None, x: int = None, y: int = None, tile_size: Union[str, int] = 256, ext: str = 'png', url: str = None, encoding: str = 'terrarium', pixel_selection: str = "first", resampling_method: str = "nearest", ) -> Tuple: """Handle tile requests.""" if not url: return ("NOK", "text/plain", "Missing URL parameter") tile_size = int(tile_size) assets = find_assets(x, y, z, url, tile_size) if assets is None: return ("NOK", "text/plain", "no assets found") rgb = load_assets(x, y, z, assets, tile_size, input_format=url, output_format=encoding, pixel_selection=pixel_selection, resampling_method=resampling_method) if rgb is None: return ("EMPTY", "text/plain", "empty tiles") driver = ext options = img_profiles.get(driver, {}) if ext == "tif": ext = "tiff" driver = "GTiff" options = geotiff_options(x, y, z, tile_size) return ( "OK", f"image/{ext}", render(rgb, img_format=driver, **options), )
def _get_tile(self, z, x, y, tileformat, color_ops=None): if tileformat == "jpg": tileformat = "jpeg" if not self.raster.tile_exists(z, x, y): raise web.HTTPError(404) data, mask = self.raster.read_tile(z, x, y) if len(data.shape) == 2: data = numpy.expand_dims(data, axis=0) if self.scale: nbands = data.shape[0] scale = self.scale if len(scale) != nbands: scale = scale * nbands for bdx in range(nbands): data[bdx] = numpy.where( mask, linear_rescale(data[bdx], in_range=scale[bdx], out_range=(0, 255)), 0, ) data = data.astype(numpy.uint8) if color_ops: data = RasterTileHandler.apply_color_operations(data, color_ops) options = img_profiles.get(tileformat, {}) return BytesIO( render(data, mask=mask, color_map=self.colormap, img_format=tileformat, **options))
def _tile( z: int, x: int, y: int, scale: int = Query( 1, gt=0, lt=4, description="Tile size scale. 1=256x256, 2=512x512..."), identifier: str = Query("WebMercatorQuad", title="TMS identifier"), filename: str = Query(...), ): """Handle /tiles requests.""" tms = morecantile.tms.get(identifier) with COGReader(f"{filename}.tif", tms=tms) as cog: # type: ignore tile, mask = cog.tile(x, y, z, tilesize=scale * 256) ext = ImageType.png driver = drivers[ext.value] options = img_profiles.get(driver.lower(), {}) img = render(tile, mask, img_format="png", **options) return TileResponse(img, media_type=mimetype[ext.value])
def get(self, request, pk=None, project_pk=None, tile_type="", z="", x="", y="", scale=1): """ Get a tile image """ task = self.get_and_check_task(request, pk) z = int(z) x = int(x) y = int(y) scale = int(scale) ext = "png" driver = "jpeg" if ext == "jpg" else ext indexes = None nodata = None rgb_tile = None formula = self.request.query_params.get('formula') bands = self.request.query_params.get('bands') rescale = self.request.query_params.get('rescale') color_map = self.request.query_params.get('color_map') hillshade = self.request.query_params.get('hillshade') boundaries_feature = self.request.query_params.get('boundaries') if boundaries_feature == '': boundaries_feature = None if boundaries_feature is not None: try: boundaries_feature = json.loads(boundaries_feature) except json.JSONDecodeError: raise exceptions.ValidationError( _("Invalid boundaries parameter")) if formula == '': formula = None if bands == '': bands = None if rescale == '': rescale = None if color_map == '': color_map = None if hillshade == '' or hillshade == '0': hillshade = None try: expr, _discard_ = lookup_formula(formula, bands) except ValueError as e: raise exceptions.ValidationError(str(e)) if tile_type in ['dsm', 'dtm'] and rescale is None: rescale = "0,1000" if tile_type == 'orthophoto' and rescale is None: rescale = "0,255" if tile_type in ['dsm', 'dtm'] and color_map is None: color_map = "gray" if tile_type == 'orthophoto' and formula is not None: if color_map is None: color_map = "gray" if rescale is None: rescale = "-1,1" if nodata is not None: nodata = np.nan if nodata == "nan" else float(nodata) tilesize = scale * 256 url = get_raster_path(task, tile_type) if not os.path.isfile(url): raise exceptions.NotFound() with COGReader(url) as src: if not src.tile_exists(z, x, y): raise exceptions.NotFound(_("Outside of bounds")) with COGReader(url) as src: minzoom, maxzoom = get_zoom_safe(src) has_alpha = has_alpha_band(src.dataset) if z < minzoom - ZOOM_EXTRA_LEVELS or z > maxzoom + ZOOM_EXTRA_LEVELS: raise exceptions.NotFound() if boundaries_feature is not None: try: boundaries_cutline = create_cutline( src.dataset, boundaries_feature, CRS.from_string('EPSG:4326')) except: raise exceptions.ValidationError(_("Invalid boundaries")) else: boundaries_cutline = None # Handle N-bands datasets for orthophotos (not plant health) if tile_type == 'orthophoto' and expr is None: ci = src.dataset.colorinterp # More than 4 bands? if len(ci) > 4: # Try to find RGBA band order if ColorInterp.red in ci and \ ColorInterp.green in ci and \ ColorInterp.blue in ci: indexes = ( ci.index(ColorInterp.red) + 1, ci.index(ColorInterp.green) + 1, ci.index(ColorInterp.blue) + 1, ) else: # Fallback to first three indexes = ( 1, 2, 3, ) elif has_alpha: indexes = non_alpha_indexes(src.dataset) # Workaround for https://github.com/OpenDroneMap/WebODM/issues/894 if nodata is None and tile_type == 'orthophoto': nodata = 0 resampling = "nearest" padding = 0 if tile_type in ["dsm", "dtm"]: resampling = "bilinear" padding = 16 try: with COGReader(url) as src: if expr is not None: if boundaries_cutline is not None: tile = src.tile( x, y, z, expression=expr, tilesize=tilesize, nodata=nodata, padding=padding, resampling_method=resampling, vrt_options={'cutline': boundaries_cutline}) else: tile = src.tile(x, y, z, expression=expr, tilesize=tilesize, nodata=nodata, padding=padding, resampling_method=resampling) else: if boundaries_cutline is not None: tile = src.tile( x, y, z, tilesize=tilesize, nodata=nodata, padding=padding, resampling_method=resampling, vrt_options={'cutline': boundaries_cutline}) else: tile = src.tile(x, y, z, indexes=indexes, tilesize=tilesize, nodata=nodata, padding=padding, resampling_method=resampling) except TileOutsideBounds: raise exceptions.NotFound(_("Outside of bounds")) if color_map: try: colormap.get(color_map) except InvalidColorMapName: raise exceptions.ValidationError( _("Not a valid color_map value")) intensity = None try: rescale_arr = list(map(float, rescale.split(","))) except ValueError: raise exceptions.ValidationError(_("Invalid rescale value")) options = img_profiles.get(driver, {}) if hillshade is not None: try: hillshade = float(hillshade) if hillshade <= 0: hillshade = 1.0 except ValueError: raise exceptions.ValidationError(_("Invalid hillshade value")) if tile.data.shape[0] != 1: raise exceptions.ValidationError( _("Cannot compute hillshade of non-elevation raster (multiple bands found)" )) delta_scale = (maxzoom + ZOOM_EXTRA_LEVELS + 1 - z) * 4 dx = src.dataset.meta["transform"][0] * delta_scale dy = -src.dataset.meta["transform"][4] * delta_scale ls = LightSource(azdeg=315, altdeg=45) # Hillshading is not a local tile operation and # requires neighbor tiles to be rendered seamlessly elevation = get_elevation_tiles(tile.data[0], url, x, y, z, tilesize, nodata, resampling, padding) intensity = ls.hillshade(elevation, dx=dx, dy=dy, vert_exag=hillshade) intensity = intensity[tilesize:tilesize * 2, tilesize:tilesize * 2] if intensity is not None: rgb = tile.post_process(in_range=(rescale_arr, )) if colormap: rgb, _discard_ = apply_cmap(rgb.data, colormap.get(color_map)) if rgb.data.shape[0] != 3: raise exceptions.ValidationError( _("Cannot process tile: intensity image provided, but no RGB data was computed." )) intensity = intensity * 255.0 rgb = hsv_blend(rgb, intensity) if rgb is not None: return HttpResponse(render(rgb, tile.mask, img_format=driver, **options), content_type="image/{}".format(ext)) if color_map is not None: return HttpResponse( tile.post_process(in_range=(rescale_arr, )).render( img_format=driver, colormap=colormap.get(color_map), **options), content_type="image/{}".format(ext)) return HttpResponse(tile.post_process(in_range=(rescale_arr, )).render( img_format=driver, **options), content_type="image/{}".format(ext))
def tiles( url: str, z: int, x: int, y: int, scale: int = 1, ext: str = "png", bands: str = None, expr: str = None, rescale: str = None, color_ops: str = None, color_map: str = None, pan: bool = False, pixel_selection: str = "first", ) -> Tuple[str, str, BinaryIO]: """Handle tile requests.""" with MosaicBackend(url) as mosaic: assets = mosaic.tile(x, y, z) if not assets: return ("EMPTY", "text/plain", f"No assets found for tile {z}-{x}-{y}") tilesize = 256 * scale pixel_selection = pixSel[pixel_selection] if expr is not None: tile, mask = mosaic_tiler( assets, x, y, z, expressionTiler, pixel_selection=pixel_selection(), expr=expr, tilesize=tilesize, pan=pan, ) elif bands is not None: tile, mask = mosaic_tiler( assets, x, y, z, landsatTiler, pixel_selection=pixel_selection(), bands=tuple(bands.split(",")), tilesize=tilesize, pan=pan, ) else: return ("NOK", "text/plain", "No bands nor expression given") if tile is None: return ("EMPTY", "text/plain", "empty tiles") if color_map: color_map = get_colormap(color_map, format="gdal") assets_str = json.dumps(assets, separators=(",", ":")) return_kwargs = {"custom_headers": {"X-ASSETS": assets_str}} if ext == "gif": frames = [] options = img_profiles.get("png", {}) for i in range(len(tile)): img = post_process_tile(tile[i].copy(), mask[i].copy(), rescale=rescale, color_formula=color_ops) frames.append( Image.open( io.BytesIO( render( img, mask[i], img_format="png", colormap=color_map, **options, )))) sio = io.BytesIO() frames[0].save( sio, "gif", save_all=True, append_images=frames[1:], duration=300, loop=0, optimize=True, ) sio.seek(0) return ("OK", f"image/{ext}", sio.getvalue(), return_kwargs) rtile = post_process_tile(tile, mask, rescale=rescale, color_formula=color_ops) if ext == "bin": # Flatten in Row-major order buf = rtile.tobytes(order='C') return ("OK", "application/x-binary", buf, return_kwargs) driver = "jpeg" if ext == "jpg" else ext options = img_profiles.get(driver, {}) if ext == "tif": ext = "tiff" driver = "GTiff" tile_bounds = mercantile.xy_bounds(mercantile.Tile(x=x, y=y, z=z)) options = dict( crs={"init": "EPSG:3857"}, transform=from_bounds(*tile_bounds, tilesize, tilesize), ) return ( "OK", f"image/{ext}", render(rtile, mask, img_format=driver, colormap=color_map, **options), return_kwargs, )
def test_render_geotiff(): """Creates GeoTIFF image buffer from 3 bands array.""" arr = np.random.randint(0, 255, size=(3, 512, 512), dtype=np.uint8) mask = np.zeros((512, 512), dtype=np.uint8) + 255 ops = utils.geotiff_options(1, 0, 0) assert utils.render(arr, mask=mask, img_format="GTiff", **ops)
def test_render_valid_options(): """Creates image buffer with driver options.""" arr = np.random.randint(0, 255, size=(3, 512, 512), dtype=np.uint8) mask = np.zeros((512, 512), dtype=np.uint8) + 255 assert utils.render(arr, mask=mask, img_format="png", ZLEVEL=9)
def _tile( z: int, x: int, y: int, scale: int = 1, ext: str = None, url: str = None, indexes: Optional[Union[str, Tuple]] = None, expr: Optional[str] = None, nodata: Optional[Union[str, int, float]] = None, rescale: Optional[str] = None, color_formula: Optional[str] = None, color_map: Optional[str] = None, resampling_method: str = "bilinear", **kwargs, ) -> Tuple[str, str, bytes]: """Handle /tiles requests.""" if indexes and expr: raise TilerError("Cannot pass indexes and expression") if not url: raise TilerError("Missing 'url' parameter") if nodata is not None: nodata = numpy.nan if nodata == "nan" else float(nodata) tilesize = scale * 256 if isinstance(indexes, str): indexes = tuple(map(int, indexes.split(","))) with rasterio.Env(aws_session): with COGReader(url) as cog: tile, mask = cog.tile( x, y, z, tilesize=tilesize, indexes=indexes, expression=expr, nodata=nodata, resampling_method=resampling_method, **kwargs, ) color_map = cmap.get(color_map) if color_map else cog.colormap if not ext: ext = "jpg" if mask.all() else "png" tile = utils.postprocess(tile, mask, rescale=rescale, color_formula=color_formula) if ext == "npy": sio = io.BytesIO() numpy.save(sio, (tile, mask)) sio.seek(0) content = sio.getvalue() else: driver = drivers[ext] options = img_profiles.get(driver.lower(), {}) if ext == "tif": options = geotiff_options(x, y, z, tilesize=tilesize) if color_map: options["colormap"] = color_map content = render(tile, mask, img_format=driver, **options) return ("OK", mimetype[ext], content)
def test_render_valid_1band(): """Creates PNG image buffer from one band array.""" arr = np.random.randint(0, 255, size=(512, 512), dtype=np.uint8) assert utils.render(arr)
band = rasterio.band(dataset, 1) print(band) tile, mask = reader.tile(dataset, 852, 418, 10, tilesize=1024) min = 0 max = 60 tile1 = (tile[0]-min)/max*255 tile2 = (tile[1]-min)/max*255 tile3 = (tile[2]-min)/max*255 tileList = np.array([tile[0], tile[1], tile[2]]) renderData = np.where(tileList > 255, 255, tileList) renderData = np.where(renderData < 0, 0, renderData) renderData = renderData.astype(np.uint8) mtdata = to_math_type(renderData) data = gamma(mtdata, 1.7) data = sigmoidal(mtdata, 10, 0)*255 buffer = render(data.astype(np.uint8), mask=mask) with open("reraster2.png", "wb") as f: f.write(buffer)
def test_render_valid_colormap(): """Creates 'colormaped' PNG image buffer from one band array.""" arr = np.random.randint(0, 255, size=(1, 512, 512), dtype=np.uint8) mask = np.zeros((512, 512), dtype=np.uint8) cmap = colormap.get_colormap("cfastie") assert utils.render(arr, mask, colormap=cmap, img_format="jpeg")
def _img( mosaicid: str = None, z: int = None, x: int = None, y: int = None, scale: int = 1, ext: str = None, url: str = None, indexes: Optional[Sequence[int]] = None, rescale: str = None, color_ops: str = None, color_map: str = None, pixel_selection: str = "first", resampling_method: str = "nearest", ) -> Tuple: """Handle tile requests.""" if not mosaicid and not url: return ("NOK", "text/plain", "Missing 'MosaicID or URL' parameter") mosaic_path = _create_mosaic_path(mosaicid) if mosaicid else url with MosaicBackend(mosaic_path) as mosaic: assets = mosaic.tile(x, y, z) if not assets: return ("EMPTY", "text/plain", f"No assets found for tile {z}-{x}-{y}") if indexes is not None and isinstance(indexes, str): indexes = list(map(int, indexes.split(","))) tilesize = 256 * scale if pixel_selection == "last": pixel_selection = "first" assets = list(reversed(assets)) with rasterio.Env(aws_session): pixsel_method = PIXSEL_METHODS[pixel_selection] tile, mask = mosaic_tiler( assets, x, y, z, cogeoTiler, indexes=indexes, tilesize=tilesize, pixel_selection=pixsel_method(), resampling_method=resampling_method, ) if tile is None: return ("EMPTY", "text/plain", "empty tiles") rtile = _postprocess(tile, mask, rescale=rescale, color_formula=color_ops) if not ext: ext = "jpg" if mask.all() else "png" driver = "jpeg" if ext == "jpg" else ext options = img_profiles.get(driver, {}) if ext == "tif": ext = "tiff" driver = "GTiff" options = geotiff_options(x, y, z, tilesize) if color_map: options["colormap"] = cmap.get(color_map) return ( "OK", f"image/{ext}", render(rtile, mask, img_format=driver, **options), )
def test_render_valid_mask(): """Creates image buffer from 3 bands array and mask.""" arr = np.random.randint(0, 255, size=(3, 512, 512), dtype=np.uint8) mask = np.zeros((512, 512), dtype=np.uint8) assert utils.render(arr, mask=mask) assert utils.render(arr, mask=mask, img_format="jpeg")
async def cog_tile( z: int = Path( ..., ge=0, le=30, description="Mercator tiles's zoom level"), x: int = Path(..., description="Mercator tiles's column"), y: int = Path(..., description="Mercator tiles's row"), TileMatrixSetId: TileMatrixSetNames = Query( TileMatrixSetNames.WebMercatorQuad, # type: ignore description="TileMatrixSet Name (default: 'WebMercatorQuad')", ), scale: int = Query( 1, gt=0, lt=4, description="Tile size scale. 1=256x256, 2=512x512..."), format: ImageType = Query( None, description="Output image type. Default is auto."), url: str = Query(..., description="Cloud Optimized GeoTIFF URL."), image_params: CommonTileParams = Depends(), cache_client: CacheLayer = Depends(utils.get_cache), request_id: str = Depends(request_hash), ): """Create map tile from a COG.""" timings = [] headers: Dict[str, str] = {} tilesize = scale * 256 tms = morecantile.tms.get(TileMatrixSetId.name) content = None if cache_client: try: content, ext = cache_client.get_image_from_cache(request_id) format = ImageType[ext] headers["X-Cache"] = "HIT" except Exception: content = None if not content: with utils.Timer() as t: with COGReader(url, tms=tms) as cog: tile, mask = cog.tile( x, y, z, tilesize=tilesize, indexes=image_params.indexes, expression=image_params.expression, nodata=image_params.nodata, **image_params.kwargs, ) colormap = image_params.color_map or cog.colormap timings.append(("Read", t.elapsed)) if not format: format = ImageType.jpg if mask.all() else ImageType.png with utils.Timer() as t: tile = utils.postprocess( tile, mask, rescale=image_params.rescale, color_formula=image_params.color_formula, ) timings.append(("Post-process", t.elapsed)) with utils.Timer() as t: if format == ImageType.npy: sio = BytesIO() numpy.save(sio, (tile, mask)) sio.seek(0) content = sio.getvalue() else: driver = drivers[format.value] options = img_profiles.get(driver.lower(), {}) if format == ImageType.tif: bounds = tms.xy_bounds(x, y, z) dst_transform = from_bounds(*bounds, tilesize, tilesize) options = {"crs": tms.crs, "transform": dst_transform} content = render(tile, mask, img_format=driver, colormap=colormap, **options) timings.append(("Format", t.elapsed)) if cache_client and content: cache_client.set_image_cache(request_id, (content, format.value)) if timings: headers["X-Server-Timings"] = "; ".join([ "{} - {:0.2f}".format(name, time * 1000) for (name, time) in timings ]) return ImgResponse( content, media_type=ImageMimeTypes[format.value].value, headers=headers, )
def test_render_geotiff16Bytes(): """Creates GeoTIFF image buffer from 3 bands array.""" arr = np.random.randint(0, 255, size=(3, 512, 512), dtype=np.uint16) mask = np.zeros((512, 512), dtype=np.uint8) + 255 assert utils.render(arr, mask=mask, img_format="GTiff")
async def cog_part( minx: float = Path(..., description="Bounding box min X"), miny: float = Path(..., description="Bounding box min Y"), maxx: float = Path(..., description="Bounding box max X"), maxy: float = Path(..., description="Bounding box max Y"), format: ImageType = Query(None, description="Output image type."), url: str = Query(..., description="Cloud Optimized GeoTIFF URL."), image_params: CommonImageParams = Depends(), ): """Create image from part of a COG.""" timings = [] headers: Dict[str, str] = {} with utils.Timer() as t: with COGReader(url) as cog: data, mask = cog.part( [minx, miny, maxx, maxy], height=image_params.height, width=image_params.width, max_size=image_params.max_size, indexes=image_params.indexes, expression=image_params.expression, nodata=image_params.nodata, **image_params.kwargs, ) colormap = image_params.color_map or cog.colormap timings.append(("Read", t.elapsed)) with utils.Timer() as t: data = utils.postprocess( data, mask, rescale=image_params.rescale, color_formula=image_params.color_formula, ) timings.append(("Post-process", t.elapsed)) with utils.Timer() as t: if format == ImageType.npy: sio = BytesIO() numpy.save(sio, (data, mask)) sio.seek(0) content = sio.getvalue() else: driver = drivers[format.value] options = img_profiles.get(driver.lower(), {}) content = render(data, mask, img_format=driver, colormap=colormap, **options) timings.append(("Format", t.elapsed)) if timings: headers["X-Server-Timings"] = "; ".join([ "{} - {:0.2f}".format(name, time * 1000) for (name, time) in timings ]) return ImgResponse( content, media_type=ImageMimeTypes[format.value].value, headers=headers, )
def test_render_valid_1bandWebp(): """Creates WEBP image buffer from 1 band array.""" arr = np.random.randint(0, 255, size=(1, 512, 512), dtype=np.uint8) assert utils.render(arr, img_format="WEBP")
async def stac_part( minx: float = Path(..., description="Bounding box min X"), miny: float = Path(..., description="Bounding box min Y"), maxx: float = Path(..., description="Bounding box max X"), maxy: float = Path(..., description="Bounding box max Y"), format: ImageType = Query(None, description="Output image type."), url: str = Query(..., description="STAC Item URL."), assets: str = Query( "", description="comma (,) separated list of asset names."), image_params: CommonImageParams = Depends(), ): """Create image from part of STAC assets.""" timings = [] headers: Dict[str, str] = {} if not image_params.expression and not assets: raise HTTPException( status_code=status.HTTP_403_FORBIDDEN, detail="Must pass Expression or Asset list.", ) with utils.Timer() as t: with STACReader(url) as stac: data, mask = stac.part( [minx, miny, maxx, maxy], height=image_params.height, width=image_params.width, max_size=image_params.max_size, assets=assets.split(","), expression=image_params.expression, indexes=image_params.indexes, nodata=image_params.nodata, **image_params.kwargs, ) timings.append(("Read", t.elapsed)) with utils.Timer() as t: data = utils.postprocess( data, mask, rescale=image_params.rescale, color_formula=image_params.color_formula, ) timings.append(("Post-process", t.elapsed)) with utils.Timer() as t: if format == ImageType.npy: sio = BytesIO() numpy.save(sio, (data, mask)) sio.seek(0) content = sio.getvalue() else: driver = drivers[format.value] options = img_profiles.get(driver.lower(), {}) content = render( data, mask, img_format=driver, colormap=image_params.color_map, **options, ) timings.append(("Format", t.elapsed)) if timings: headers["X-Server-Timings"] = "; ".join([ "{} - {:0.2f}".format(name, time * 1000) for (name, time) in timings ]) return ImgResponse( content, media_type=ImageMimeTypes[format.value].value, headers=headers, )