def grid_mapping(self): """ str: The CF grid_mapping attribute. 'spatial_ref' is the default. """ try: return self._obj.attrs["grid_mapping"] except KeyError: pass grid_mapping = DEFAULT_GRID_MAP # search the dataset for the grid mapping name if hasattr(self._obj, "data_vars"): grid_mappings = set() for var in self._obj.data_vars: try: # pylint: disable=pointless-statement self._obj[var].rio.x_dim self._obj[var].rio.y_dim except DimensionError: continue try: grid_mapping = self._obj[var].attrs["grid_mapping"] grid_mappings.add(grid_mapping) except KeyError: pass if len(grid_mappings) > 1: raise RioXarrayError("Multiple grid mappings exist.") return grid_mapping
def crs(self): """:obj:`rasterio.crs.CRS`: Retrieve projection from `xarray.Dataset` """ if self._crs is not None: return None if self._crs is False else self._crs self._crs = super().crs if self._crs is not None: return self._crs # ensure all the CRS of the variables are the same crs_list = [] for var in self.vars: if self._obj[var].rio.crs is not None: crs_list.append(self._obj[var].rio.crs) try: crs = crs_list[0] except IndexError: crs = None if crs is None: self._crs = False return None if all(crs_i == crs for crs_i in crs_list): self._crs = crs else: raise RioXarrayError( f"CRS in DataArrays differ in the Dataset: {crs_list}") return self._crs
def grid_mapping(self): """ str: The CF grid_mapping attribute. 'spatial_ref' is the default. """ grid_mapping = self._obj.encoding.get( "grid_mapping", self._obj.attrs.get("grid_mapping") ) if grid_mapping is not None: return grid_mapping grid_mapping = DEFAULT_GRID_MAP # search the dataset for the grid mapping name if hasattr(self._obj, "data_vars"): grid_mappings = set() for var in self._obj.data_vars: if not _has_spatial_dims(self._obj, var): continue var_grid_mapping = self._obj[var].encoding.get( "grid_mapping", self._obj[var].attrs.get("grid_mapping") ) if var_grid_mapping is not None: grid_mapping = var_grid_mapping grid_mappings.add(grid_mapping) if len(grid_mappings) > 1: raise RioXarrayError("Multiple grid mappings exist.") return grid_mapping
def _get_indexer(self, key): """Get indexer for rasterio array. Parameter --------- key: tuple of int Returns ------- band_key: an indexer for the 1st dimension window: two tuples. Each consists of (start, stop). squeeze_axis: axes to be squeezed np_ind: indexer for loaded numpy array See also -------- indexing.decompose_indexer """ if len(key) != 3: raise RioXarrayError("rasterio datasets should always be 3D") # bands cannot be windowed but they can be listed band_key = key[0] np_inds = [] # bands (axis=0) cannot be windowed but they can be listed if isinstance(band_key, slice): start, stop, step = band_key.indices(self.shape[0]) band_key = np.arange(start, stop, step) # be sure we give out a list band_key = (np.asarray(band_key) + 1).tolist() if isinstance(band_key, list): # if band_key is not a scalar np_inds.append(slice(None)) # but other dims can only be windowed window = [] squeeze_axis = [] for i, (k, n) in enumerate(zip(key[1:], self.shape[1:])): if isinstance(k, slice): # step is always positive. see indexing.decompose_indexer start, stop, step = k.indices(n) np_inds.append(slice(None, None, step)) elif is_scalar(k): # windowed operations will always return an array # we will have to squeeze it later squeeze_axis.append(-(2 - i)) start = k stop = k + 1 else: start, stop = np.min(k), np.max(k) + 1 np_inds.append(k - start) window.append((start, stop)) if isinstance(key[1], np.ndarray) and isinstance(key[2], np.ndarray): # do outer-style indexing np_inds[-2:] = np.ix_(*np_inds[-2:]) return band_key, tuple(window), tuple(squeeze_axis), tuple(np_inds)
def _write_metatata_to_raster(raster_handle, xarray_dataset, tags): """ Write the metadata stored in the xarray object to raster metadata """ tags = xarray_dataset.attrs if tags is None else {**xarray_dataset.attrs, **tags} # write scales and offsets try: raster_handle.scales = tags["scales"] except KeyError: scale_factor = tags.get( "scale_factor", xarray_dataset.encoding.get("scale_factor") ) if scale_factor is not None: raster_handle.scales = (scale_factor,) * raster_handle.count try: raster_handle.offsets = tags["offsets"] except KeyError: add_offset = tags.get("add_offset", xarray_dataset.encoding.get("add_offset")) if add_offset is not None: raster_handle.offsets = (add_offset,) * raster_handle.count # filter out attributes that should be written in a different location skip_tags = ( UNWANTED_RIO_ATTRS + FILL_VALUE_NAMES + ( "transform", "scales", "scale_factor", "add_offset", "offsets", "grid_mapping", ) ) # this is for when multiple values are used # in this case, it will be stored in the raster description if not isinstance(tags.get("long_name"), str): skip_tags += ("long_name",) tags = {key: value for key, value in tags.items() if key not in skip_tags} raster_handle.update_tags(**tags) # write band name information long_name = xarray_dataset.attrs.get("long_name") if isinstance(long_name, (tuple, list)): if len(long_name) != raster_handle.count: raise RioXarrayError( "Number of names in the 'long_name' attribute does not equal " "the number of bands." ) for iii, band_description in enumerate(long_name): raster_handle.set_band_description(iii + 1, band_description) else: band_description = long_name or xarray_dataset.name if band_description: for iii in range(raster_handle.count): raster_handle.set_band_description(iii + 1, band_description)
def interpolate_na(self, method="nearest"): """ This method uses scipy.interpolate.griddata to interpolate missing data. .. warning:: scipy is an optional dependency. Parameters ---------- method: {‘linear’, ‘nearest’, ‘cubic’}, optional The method to use for interpolation in `scipy.interpolate.griddata`. Returns ------- :obj:`xarray.DataArray`: An interpolated :obj:`xarray.DataArray` object. """ if self.nodata is None: raise RioXarrayError( "nodata not found. Please set the nodata with 'rio.write_nodata()'." f"{_get_data_var_message(self._obj)}") extra_dim = self._check_dimensions() if extra_dim: interp_data = [] for _, sub_xds in self._obj.groupby(extra_dim): interp_data.append( self._interpolate_na(sub_xds.load().data, method=method)) interp_data = np.array(interp_data) else: interp_data = self._interpolate_na(self._obj.load().data, method=method) interp_array = xarray.DataArray( name=self._obj.name, data=interp_data, coords=self._obj.coords, dims=self._obj.dims, attrs=self._obj.attrs, ) interp_array.encoding = self._obj.encoding # make sure correct attributes preserved & projection added _add_attrs_proj(interp_array, self._obj) return interp_array
def to_raster( self, raster_path, driver=None, dtype=None, tags=None, windowed=False, recalc_transform=True, lock=None, compute=True, **profile_kwargs, ): """ Export the Dataset to a raster file. Only works with 2D data. ..versionadded:: 0.2 lock Parameters ---------- raster_path: str The path to output the raster to. driver: str, optional The name of the GDAL/rasterio driver to use to export the raster. Default is "GTiff" if rasterio < 1.2 otherwise it will autodetect. dtype: str, optional The data type to write the raster to. Default is the datasets dtype. tags: dict, optional A dictionary of tags to write to the raster. windowed: bool, optional If True, it will write using the windows of the output raster. This is useful for loading data in chunks when writing. Does not do anything when writing with dask. Default is False. lock: boolean or Lock, optional Lock to use to write data using dask. If not supplied, it will use a single process for writing. compute: bool, optional If True and data is a dask array, then compute and save the data immediately. If False, return a dask Delayed object. Call ".compute()" on the Delayed object to compute the result later. Call ``dask.compute(delayed1, delayed2)`` to save multiple delayed files at once. Default is True. **profile_kwargs Additional keyword arguments to pass into writing the raster. The nodata, transform, crs, count, width, and height attributes are ignored. Returns ------- :obj:`dask.Delayed`: If the data array is a dask array and compute is True. Otherwise None is returned. """ variable_dim = f"band_{uuid4()}" data_array = self._obj.to_array(dim=variable_dim) # write data array names to raster data_array.attrs["long_name"] = data_array[variable_dim].values.tolist( ) # ensure raster metadata preserved scales = [] offsets = [] nodatavals = [] for data_var in data_array[variable_dim].values: scales.append(self._obj[data_var].attrs.get("scale_factor", 1.0)) offsets.append(self._obj[data_var].attrs.get("add_offset", 0.0)) nodatavals.append(self._obj[data_var].rio.nodata) data_array.attrs["scales"] = scales data_array.attrs["offsets"] = offsets nodata = nodatavals[0] if (all(nodataval == nodata for nodataval in nodatavals) or np.isnan(nodatavals).all()): data_array.rio.write_nodata(nodata, inplace=True) else: raise RioXarrayError( "All nodata values must be the same when exporting to raster. " f"Current values: {nodatavals}") if self.crs is not None: data_array.rio.write_crs(self.crs, inplace=True) # write it to a raster return data_array.rio.set_spatial_dims( x_dim=self.x_dim, y_dim=self.y_dim, inplace=True, ).rio.to_raster( raster_path=raster_path, driver=driver, dtype=dtype, tags=tags, windowed=windowed, recalc_transform=recalc_transform, lock=lock, compute=compute, **profile_kwargs, )
def reproject( self, dst_crs, resolution=None, shape=None, transform=None, resampling=Resampling.nearest, ): """ Reproject :obj:`xarray.DataArray` objects Powered by `rasterio.warp.reproject` .. note:: Only 2D/3D arrays with dimensions 'x'/'y' are currently supported. Requires either a grid mapping variable with 'spatial_ref' or a 'crs' attribute to be set containing a valid CRS. If using a WKT (e.g. from spatiareference.org), make sure it is an OGC WKT. .. versionadded:: 0.0.27 shape .. versionadded:: 0.0.28 transform Parameters ---------- dst_crs: str OGC WKT string or Proj.4 string. resolution: float or tuple(float, float), optional Size of a destination pixel in destination projection units (e.g. degrees or metres). shape: tuple(int, int), optional Shape of the destination in pixels (dst_height, dst_width). Cannot be used together with resolution. transform: optional The destination transform. resampling: Resampling method, optional See rasterio.warp.reproject for more details. Returns ------- :obj:`xarray.DataArray`: The reprojected DataArray. """ if resolution is not None and (shape is not None or transform is not None): raise RioXarrayError( "resolution cannot be used with shape or transform.") if self.crs is None: raise MissingCRS( "CRS not found. Please set the CRS with 'rio.write_crs()'." f"{_get_data_var_message(self._obj)}") src_affine = self.transform(recalc=True) if transform is None: dst_affine, dst_width, dst_height = _make_dst_affine( self._obj, self.crs, dst_crs, resolution, shape) else: dst_affine = transform if shape is not None: dst_height, dst_width = shape else: dst_height, dst_width = self.shape extra_dim = self._check_dimensions() if extra_dim: dst_data = np.zeros( (self._obj[extra_dim].size, dst_height, dst_width), dtype=self._obj.dtype.type, ) else: dst_data = np.zeros((dst_height, dst_width), dtype=self._obj.dtype.type) dst_nodata = self._obj.dtype.type( self.nodata if self.nodata is not None else -9999) src_nodata = self._obj.dtype.type( self.nodata if self.nodata is not None else dst_nodata) rasterio.warp.reproject( source=self._obj.values, destination=dst_data, src_transform=src_affine, src_crs=self.crs, src_nodata=src_nodata, dst_transform=dst_affine, dst_crs=dst_crs, dst_nodata=dst_nodata, resampling=resampling, ) # add necessary attributes new_attrs = _generate_attrs(self._obj, dst_nodata) # make sure dimensions with coordinates renamed to x,y dst_dims = [] for dim in self._obj.dims: if dim == self.x_dim: dst_dims.append("x") elif dim == self.y_dim: dst_dims.append("y") else: dst_dims.append(dim) xda = xarray.DataArray( name=self._obj.name, data=dst_data, coords=_make_coords(self._obj, dst_affine, dst_width, dst_height), dims=tuple(dst_dims), attrs=new_attrs, ) xda.encoding = self._obj.encoding xda.rio.write_transform(dst_affine, inplace=True) xda.rio.write_crs(dst_crs, inplace=True) xda.rio.write_coordinate_system(inplace=True) return xda
def reproject( self, dst_crs, resolution=None, shape=None, transform=None, resampling=Resampling.nearest, nodata=None, **kwargs, ): """ Reproject :obj:`xarray.DataArray` objects Powered by :func:`rasterio.warp.reproject` .. note:: Only 2D/3D arrays with dimensions 'x'/'y' are currently supported. Requires either a grid mapping variable with 'spatial_ref' or a 'crs' attribute to be set containing a valid CRS. If using a WKT (e.g. from spatiareference.org), make sure it is an OGC WKT. .. versionadded:: 0.0.27 shape .. versionadded:: 0.0.28 transform .. versionadded:: 0.5.0 nodata, kwargs Parameters ---------- dst_crs: str OGC WKT string or Proj.4 string. resolution: float or tuple(float, float), optional Size of a destination pixel in destination projection units (e.g. degrees or metres). shape: tuple(int, int), optional Shape of the destination in pixels (dst_height, dst_width). Cannot be used together with resolution. transform: Affine, optional The destination transform. resampling: rasterio.enums.Resampling, optional See :func:`rasterio.warp.reproject` for more details. nodata: float, optional The nodata value used to initialize the destination; it will remain in all areas not covered by the reprojected source. Defaults to the nodata value of the source image if none provided and exists or attempts to find an appropriate value by dtype. **kwargs: dict Additional keyword arguments to pass into :func:`rasterio.warp.reproject`. To override: - src_transform: `rio.write_transform` - src_crs: `rio.write_crs` - src_nodata: `rio.write_nodata` Returns ------- :obj:`xarray.DataArray`: The reprojected DataArray. """ if resolution is not None and (shape is not None or transform is not None): raise RioXarrayError( "resolution cannot be used with shape or transform.") if self.crs is None: raise MissingCRS( "CRS not found. Please set the CRS with 'rio.write_crs()'." f"{_get_data_var_message(self._obj)}") gcps = self.get_gcps() if gcps: kwargs.setdefault("gcps", gcps) src_affine = None if "gcps" in kwargs else self.transform(recalc=True) if transform is None: dst_affine, dst_width, dst_height = _make_dst_affine( self._obj, self.crs, dst_crs, resolution, shape, **kwargs) else: dst_affine = transform if shape is not None: dst_height, dst_width = shape else: dst_height, dst_width = self.shape dst_data = self._create_dst_data(dst_height, dst_width) dst_nodata = self._get_dst_nodata(nodata) rasterio.warp.reproject( source=self._obj.values, destination=dst_data, src_transform=src_affine, src_crs=self.crs, src_nodata=self.nodata, dst_transform=dst_affine, dst_crs=dst_crs, dst_nodata=dst_nodata, resampling=resampling, **kwargs, ) # add necessary attributes new_attrs = _generate_attrs(self._obj, dst_nodata) # make sure dimensions with coordinates renamed to x,y dst_dims = [] for dim in self._obj.dims: if dim == self.x_dim: dst_dims.append("x") elif dim == self.y_dim: dst_dims.append("y") else: dst_dims.append(dim) xda = xarray.DataArray( name=self._obj.name, data=dst_data, coords=_make_coords(self._obj, dst_affine, dst_width, dst_height), dims=tuple(dst_dims), attrs=new_attrs, ) xda.encoding = self._obj.encoding xda.rio.write_transform(dst_affine, inplace=True) xda.rio.write_crs(dst_crs, inplace=True) xda.rio.write_coordinate_system(inplace=True) return xda