예제 #1
0
def predict_risk_mort(cols, model, features, imputer, explainer, feature_vals,
                      temp_unit, card_text, language):
    score, imputed_text, plot = predict_risk(True, model, features, imputer,
                                             explainer, feature_vals, cols,
                                             temp_unit, language)
    card_content = [
        html.H4(card_text, className="score-calculator-card-content"),
        html.H4(str(score) + "%", className="score-calculator-card-content"),
    ]
    return card_content, imputed_text, plot
예제 #2
0
def predict_risk_mort(cols, model, features, imputer, explainer, feature_vals,
                      temp_unit, card_text, language):
    """Given features, other input, etc. calculate a score and return score_card, imputed_text, and user plot"""
    score, imputed_text, plot = predict_risk(True, model, features, imputer,
                                             explainer, feature_vals, cols,
                                             temp_unit, language)
    card_content = [
        html.H4(card_text, className="score-calculator-card-content"),
        html.H4(str(score) + "%", className="score-calculator-card-content"),
    ]
    return card_content, imputed_text, plot
예제 #3
0
def predict_risk_infec(cols, model, features, imputer, explainer, feature_vals,
                       temp_unit, card_text, language):
    score, impute_text, plot = predict_risk(False, model, features, imputer,
                                            explainer, feature_vals, cols,
                                            temp_unit, language)
    card_content = [
        html.H4(card_text[0],
                className="score-calculator-card-content-infection"),
        html.H4(str(int(math.floor(score / 10.0))) + card_text[1],
                className="score-calculator-card-content-infection"),
    ]
    return card_content, impute_text, plot
예제 #4
0
def predict_risk_mort(labs, feature_vals, temp_unit, card_text, language):
    if labs:
        cols = cols_labs_mort
        model = labs_model_mort
        features = labs_features_mort
        imputer = labs_imputer_mort
        explainer = labs_explainer_mort
    else:
        cols = cols_no_labs_mort
        model = no_labs_model_mort
        features = no_labs_features_mort
        imputer = no_labs_imputer_mort
        explainer = no_labs_explainer_mort
    score, imputed_text, plot = predict_risk(True, model, features, imputer,
                                             explainer, feature_vals, cols,
                                             temp_unit, labs, language)
    card_content = [
        html.H4(card_text, className="score-calculator-card-content"),
        html.H4(str(score) + "%", className="score-calculator-card-content"),
    ]
    return card_content, imputed_text, plot
예제 #5
0
def predict_risk_infec(labs, feature_vals, temp_unit, card_text, language):
    if labs:
        with open('assets/risk_calculators/infection/labs_imputer.pkl',
                  'rb') as file:
            imputer_pickle = pickle.load(file)
        with open('assets/risk_calculators/infection/labs_json.pkl',
                  'rb') as file:
            features_pickle = pickle.load(file)
        with open('assets/risk_calculators/infection/labs_model_explainer.pkl',
                  'rb') as file:
            model_pickle = pickle.load(file)
        cols = get_cols(True)
    else:
        with open('assets/risk_calculators/infection/without_labs_imputer.pkl',
                  'rb') as file:
            imputer_pickle = pickle.load(file)
        with open('assets/risk_calculators/infection/without_labs_json.pkl',
                  'rb') as file:
            features_pickle = pickle.load(file)
        with open(
                'assets/risk_calculators/infection/without_labs_model_explainer.pkl',
                'rb') as file:
            model_pickle = pickle.load(file)
        cols = get_cols(False)
    model = model_pickle["model"]
    features = features_pickle["json"]
    imputer = imputer_pickle["imputer"]
    explainer = model_pickle["explainer"]

    score, impute_text, plot = predict_risk(False, model, features, imputer,
                                            explainer, feature_vals, cols,
                                            temp_unit, labs, language)
    card_content = [
        html.H4(card_text[0],
                className="score-calculator-card-content-infection"),
        html.H4(str(int(math.floor(score / 10.0))) + card_text[1],
                className="score-calculator-card-content-infection"),
    ]
    return card_content, impute_text, plot
def predict_risk_mort(labs, feature_vals, temp_unit, card_text, language):
    if labs:
        with open('assets/risk_calculators/mortality/labs_imputer.pkl',
                  'rb') as file:
            imputer_pickle = pickle.load(file)
        with open('assets/risk_calculators/mortality/labs_json.pkl',
                  'rb') as file:
            features_pickle = pickle.load(file)
        with open('assets/risk_calculators/mortality/labs_model_explainer.pkl',
                  'rb') as file:
            model_pickle = pickle.load(file)
        cols = get_cols(True)
    else:
        with open('assets/risk_calculators/mortality/without_labs_imputer.pkl',
                  'rb') as file:
            imputer_pickle = pickle.load(file)
        with open('assets/risk_calculators/mortality/without_labs_json.pkl',
                  'rb') as file:
            features_pickle = pickle.load(file)
        with open(
                'assets/risk_calculators/mortality/without_labs_model_explainer.pkl',
                'rb') as file:
            model_pickle = pickle.load(file)
        cols = get_cols(False)

    model = model_pickle["model"]
    features = features_pickle["json"]
    imputer = imputer_pickle["imputer"]
    explainer = model_pickle["explainer"]

    score, imputed_text, plot = predict_risk(True, model, features, imputer,
                                             explainer, feature_vals, cols,
                                             temp_unit, labs, language)
    card_content = [
        html.H4(card_text, className="score-calculator-card-content"),
        html.H4(str(score) + "%", className="score-calculator-card-content"),
    ]
    return card_content, imputed_text, plot
예제 #7
0
def predict_risk_infec(labs, feature_vals, temp_unit, card_text, language):
    if labs:
        cols = cols_labs_infec
        model = labs_model_infec
        features = labs_features_infec
        imputer = labs_imputer_infec
        explainer = labs_explainer_infec
    else:
        cols = cols_no_labs_infec
        model = no_labs_model_infec
        features = no_labs_features_infec
        imputer = no_labs_imputer_infec
        explainer = no_labs_explainer_infec
    score, impute_text, plot = predict_risk(False, model, features, imputer,
                                            explainer, feature_vals, cols,
                                            temp_unit, labs, language)
    card_content = [
        html.H4(card_text[0],
                className="score-calculator-card-content-infection"),
        html.H4(str(int(math.floor(score / 10.0))) + card_text[1],
                className="score-calculator-card-content-infection"),
    ]
    return card_content, impute_text, plot