amplitudes = [1, 1, 1] phs = phsTools.simulate_phs(platform, points, amplitudes) #Apply RVP correction phs_corr = phsTools.RVP_correct(phs, platform) #Apply algorithm of choice to phase history data img_bp = imgTools.backprojection(phs_corr, platform, img_plane, taylor=17, upsample=2) N = 1000 img_DSBP = imgTools.DSBP(phs_corr, platform, img_plane, center=[200, 0, 0], size=[N, N], n=8) #Output image du = img_plane['du'] dv = img_plane['dv'] #u = img_plane['u']; v = img_plane['v'] u = np.arange(-N / 2, N / 2) * du v = np.arange(-N / 2, N / 2) * dv extent = [u.min(), u.max(), v.min(), v.max()] plt.subplot(1, 2, 1) plt.title('Full Backprojection') imgTools.imshow(img_bp[1024 - N / 2:1024 + N / 2, 1315 - N / 2:1315 + N / 2], dB_scale=[-25, 0],
#Create image plane dictionary img_plane = imgTools.img_plane_dict(platform, res_factor=1.4, upsample=True, aspect=1.0) #Apply algorithm of choice to phase history data img_bp = imgTools.backprojection(phs, platform, img_plane, taylor=17, upsample=2) N = 128 img_DSBP = imgTools.DSBP(phs, platform, img_plane, center=[-15 - 0.6, 22 - 0.4, 0], size=[N, N]) #Output image du = img_plane['du'] dv = img_plane['dv'] #u = img_plane['u']; v = img_plane['v'] u = np.arange(-N / 2, N / 2) * du v = np.arange(-N / 2, N / 2) * dv extent = [u.min(), u.max(), v.min(), v.max()] plt.subplot(1, 2, 1) plt.title('Full Backprojection') imgTools.imshow(img_bp[177 - N // 2:177 + N // 2, 202 - N // 2:202 + N // 2], dB_scale=[-25, 0],