예제 #1
0
def no_images(labelit_log):

    # 3 images per wedge, maximum of 30 => 1 to 10 wedges.

    beam, lattice, metric, cell, image = rj_parse_labelit_log_file(labelit_log)
    template, directory = rj_get_template_directory(image)
    images = rj_find_matching_images(image)
    phi = rj_get_phi(image)

    if lattice == 'aP':
        raise RuntimeError, 'triclinic lattices useless'

    # right, what I want to do is autoindex with images at 0, 45, 90 or
    # thereabouts (in P1), then do the cell refinement, then score the
    # resulting cell constants

    ai_images = calculate_images_ai(images, phi, 3)

    metrics = []

    for count in range(1, 10):
        result = calculate_images(images, phi, count + 1)

        # first autoindex commands

        commands = [
            'template %s' % template,
            'directory %s' % directory,
            'beam %f %f' % beam]

        commands.append('symm P1')

        for image in ai_images:
            commands.append('autoindex dps refine image %d' % image)

        commands.append('mosaic estimate')
        commands.append('go')

        # the cell refinement commands

        commands.append('postref multi segments 3')

        for pair in result:
            commands.append('process %d %d' % pair)
            commands.append('go')

        output = rj_run_job('ipmosflm-7.0.3', [], commands)

        cell, mosaic = rj_parse_mosflm_cr_log(output)
        result = lattice_symmetry(cell)
        
        l = sort_lattices(result.keys())[-1]
        
        if l != lattice:
            raise RuntimeError, 'cell refinement gave wrong lattice'
        
        metrics.append(result[l]['penalty'])

    return metrics
예제 #2
0
def phi_spacing(labelit_log):

    beam, lattice, metric, cell, image = rj_parse_labelit_log_file(labelit_log)
    template, directory = rj_get_template_directory(image)
    images = rj_find_matching_images(image)
    phi = rj_get_phi(image)

    if lattice == 'aP':
        raise RuntimeError, 'triclinic lattices useless'

    # then copy the dataset_preferences.py somewhere safe

    if os.path.exists('dataset_preferences.py'):
        shutil.copyfile('dataset_preferences.py',
                        'dataset_preferences.bak')

    # write out a dataset preferences file

    fout = open('dataset_preferences.py', 'w')
    fout.write('beam = (%f, %f)\n' % beam)
    fout.write('wedgelimit = 3\n')
    fout.write('beam_search_scope = 1.0\n')
    fout.close()

    # generate the list of phi values...

    phis = [float(j + 1) for j in range(5, 45)]

    image_numbers = []

    for p in phis:
        result = calculate_images(images, phi, p)
        if not result in image_numbers:
            image_numbers.append(result)

    # now run labelit with phi spacing 6-45

    metrics = []
    spacings = []

    for i_n in image_numbers:
        spacing = phi * (i_n[2] - i_n[1])
        image_names = [rj_image_name(template, directory, i) for i in i_n]
        output = rj_run_job('labelit.screen --index_only',
                            image_names, [])
        b, l, m, c, i = rj_parse_labelit_log(output)

        if l != lattice:
            raise RuntimeError, 'incorrect result with %d images' % (count + 1)

        metrics.append(m)
        spacings.append(spacing)

    if os.path.exists('dataset_preferences.bak'):
        shutil.copyfile('dataset_preferences.bak', 'dataset_preferences.py')

    return metrics, spacings
예제 #3
0
def no_images(labelit_log):
    # first parse this

    beam, lattice, metric, cell, image = rj_parse_labelit_log_file(labelit_log)
    template, directory = rj_get_template_directory(image)
    images = rj_find_matching_images(image)
    phi = rj_get_phi(image)

    if lattice == 'aP':
        raise RuntimeError, 'triclinic lattices useless'

    # then copy the dataset_preferences.py somewhere safe

    if os.path.exists('dataset_preferences.py'):
        shutil.copyfile('dataset_preferences.py',
                        'dataset_preferences.bak')

    # write out a dataset preferences file

    fout = open('dataset_preferences.py', 'w')
    fout.write('beam = (%f, %f)\n' % beam)
    fout.write('wedgelimit = 15\n')
    fout.write('beam_search_scope = 1.0\n')
    fout.close()

    # now run labelit with 1 - 15 images

    metrics = []
    times = []

    for count in range(15):
        result = calculate_images(images, phi, count + 1)
        image_names = [rj_image_name(template, directory, i) for i in result]

        t0 = time.time()
        output = rj_run_job('labelit.screen --index_only',
                            image_names, [])
        t1 = time.time()

        times.append((t1 - t0))
        
        b, l, m, c, i = rj_parse_labelit_log(output)

        if l != lattice:
            raise RuntimeError, 'incorrect result with %d images' % (count + 1)

        metrics.append(m)

    if os.path.exists('dataset_preferences.bak'):
        shutil.copyfile('dataset_preferences.bak', 'dataset_preferences.py')

    return metrics, times
예제 #4
0
def gather(pmin, pmax, files):
    data = { }

    for j in range(1, 10):
        data[j + 1] = []

    here = os.getcwd()

    for f in files:
        # hack to get the image name, so that I can then get (and test) the 
        # phi range...

        directory = os.path.split(f)[0]
        os.chdir(directory)
        output = rj_run_job('labelit.stats_index', [], [])
        os.chdir(here)
        b, l, m, c, i = rj_parse_labelit_log(output)

        phi = rj_get_phi(i)

        if phi < pmin or phi > pmax:
            continue
        
        records = open(f, 'r').readlines()
        if not len(records) == 9:
            continue

        for r in records:
            s = r.split()
            n = int(s[0])
            m = float(s[1])

            data[n].append(m)

    for j in range(1, 10):
        positive_data = []
        for d in data[j + 1]:
            if d > 0:
                positive_data.append(d)
        m, s = meansd(positive_data)

        print '%d %.3f %.3f' % (j + 1, m, s)

    print '%d points' % len(data[2])
예제 #5
0
파일: rj_cr_test.py 프로젝트: xia2/trashcan
def cr_test(labelit_log):
    
    beam, lattice, metric, cell, image = rj_parse_labelit_log_file(labelit_log)
    lattices, cells = rj_parse_labelit_log_lattices(
        open(labelit_log).readlines())
    template, directory = rj_get_template_directory(image)
    images = rj_find_matching_images(image)
    phi = rj_get_phi(image)

    if lattice == 'aP':
        raise RuntimeError, 'triclinic lattices useless'

    wedges = calculate_images(images, phi)
    
    ai_images = calculate_images_ai(images, phi, 3)

    # run a quick autoindex (or re-read the labelit log file above) to
    # generate the list of possible unit cell etc.

    rmsds_all = { }

    # then loop over these

    for lattice in lattices:
        commands = [
            'template %s' % template,
            'directory %s' % directory,
            'beam %f %f' % beam]

        commands.append('symm %d' % lattice_spacegroup(lattice))
        commands.append('cell %f %f %f %f %f %f' % tuple(cells[lattice]))

        for image in ai_images:
            commands.append('autoindex dps refine image %d' % image)

        commands.append('mosaic estimate')
        commands.append('go')

        # the cell refinement commands

        commands.append('postref multi segments 3')

        for pair in wedges:
            commands.append('process %d %d' % pair)
            commands.append('go')

        for c in commands:
            # print c
            pass

        output = rj_run_job('ipmosflm-7.0.3', [], commands)
        
        images, rmsds = rj_parse_mosflm_cr_log_rmsd(output)

        rmsds_all[lattice] = rmsds

    # and finally calculate the RMSD ratios.

    # break up by lattice, image and cycle

    for lattice in lattices[:-1]:
        print lattice
        values = []
        for cycle in rmsds_all[lattice]:
            if not cycle in rmsds_all['aP']:
                continue
            record = '%3d' % cycle
            for j in range(len(images)):
                record += ' %.3f' % (rmsds_all[lattice][cycle][j] /
                                     rmsds_all['aP'][cycle][j])
                values.append((rmsds_all[lattice][cycle][j] /
                               rmsds_all['aP'][cycle][j]))

            print record

        m, s = meansd(values)
        print ':: %s %.3f %.3f' % (lattice, m, s)
예제 #6
0
def phi_spacing(labelit_log):

    # 3 images per wedge, maximum of 30 => 1 to 10 wedges.

    beam, lattice, metric, cell, image = rj_parse_labelit_log_file(labelit_log)
    template, directory = rj_get_template_directory(image)
    images = rj_find_matching_images(image)
    phi = rj_get_phi(image)

    if lattice == 'aP':
        raise RuntimeError, 'triclinic lattices useless'

    # right, what I want to do is autoindex with images at 0, 45, 90 or
    # thereabouts (in P1), then do the cell refinement, then score the
    # resulting cell constants

    ai_images = calculate_images_ai(images, phi, 3)

    metrics = []
    spacings = []

    phis = [float(j + 1) for j in range(10, 45)]

    image_numbers = []

    for p in phis:
        result = calculate_images(images, phi, p)
        if phi * (result[-1][-1] - result[0][0] + 1) > 90.0:
            continue
        if not result in image_numbers:
            image_numbers.append(result)

    for result in image_numbers:
        # first autoindex commands

        spacing = nint(phi * (result[1][0] - result[0][0]))
        spacings.append(spacing)

        commands = [
            'template %s' % template,
            'directory %s' % directory,
            'beam %f %f' % beam]

        commands.append('symm P1')

        for image in ai_images:
            commands.append('autoindex dps refine image %d' % image)

        commands.append('mosaic estimate')
        commands.append('go')

        # the cell refinement commands

        commands.append('postref multi segments 3')

        for pair in result:
            commands.append('process %d %d' % pair)
            commands.append('go')

        output = rj_run_job('ipmosflm-7.0.3', [], commands)

        try:
            cell, mosaic = rj_parse_mosflm_cr_log(output)
        except RuntimeError, e:
            for record in output:
                print record[:-1]
            raise e
        result = lattice_symmetry(cell)
        
        l = sort_lattices(result.keys())[-1]
        
        if l != lattice:
            raise RuntimeError, 'cell refinement gave wrong lattice'
        
        metrics.append(result[l]['penalty'])