def no_images(xds_inp): firstlast, phi, records = rj_parse_idxref_xds_inp( open(xds_inp, 'r').readlines()) images = [j for j in range(firstlast[0], firstlast[1] + 1)] # first run with all images, then define the 'correct' lattice # as the one which results from this autoindex step. xds_inp = open('XDS.INP', 'w') for record in records: xds_inp.write('%s\n' % record) xds_inp.write('SPOT_RANGE= %d %d\n' % firstlast) xds_inp.close() output = rj_run_job('xds', [], []) cell = rj_parse_idxref_lp(open('IDXREF.LP', 'r').readlines()) result = lattice_symmetry(cell) lattice = sort_lattices(result.keys())[-1] score = result[lattice]['penalty'] metrics = [] for count in range(10): result = calculate_images(images, phi, count + 1) xds_inp = open('XDS.INP', 'w') for record in records: xds_inp.write('%s\n' % record) for pair in result: xds_inp.write('SPOT_RANGE= %d %d\n' % pair) xds_inp.close() output = rj_run_job('xds', [], []) cell = rj_parse_idxref_lp(open('IDXREF.LP', 'r').readlines()) result = lattice_symmetry(cell) l = sort_lattices(result.keys())[-1] if l != lattice: raise RuntimeError, 'cell refinement gave wrong lattice' metrics.append(result[l]['penalty']) return metrics, score
def no_images(labelit_log): # 3 images per wedge, maximum of 30 => 1 to 10 wedges. beam, lattice, metric, cell, image = rj_parse_labelit_log_file(labelit_log) template, directory = rj_get_template_directory(image) images = rj_find_matching_images(image) phi = rj_get_phi(image) if lattice == 'aP': raise RuntimeError, 'triclinic lattices useless' # right, what I want to do is autoindex with images at 0, 45, 90 or # thereabouts (in P1), then do the cell refinement, then score the # resulting cell constants ai_images = calculate_images_ai(images, phi, 3) metrics = [] for count in range(1, 10): result = calculate_images(images, phi, count + 1) # first autoindex commands commands = [ 'template %s' % template, 'directory %s' % directory, 'beam %f %f' % beam] commands.append('symm P1') for image in ai_images: commands.append('autoindex dps refine image %d' % image) commands.append('mosaic estimate') commands.append('go') # the cell refinement commands commands.append('postref multi segments 3') for pair in result: commands.append('process %d %d' % pair) commands.append('go') output = rj_run_job('ipmosflm-7.0.3', [], commands) cell, mosaic = rj_parse_mosflm_cr_log(output) result = lattice_symmetry(cell) l = sort_lattices(result.keys())[-1] if l != lattice: raise RuntimeError, 'cell refinement gave wrong lattice' metrics.append(result[l]['penalty']) return metrics
def phi_spacing(xds_inp): firstlast, phi, records = rj_parse_idxref_xds_inp( open(xds_inp, 'r').readlines()) images = [j for j in range(firstlast[0], firstlast[1] + 1)] # first run with all images, then define the 'correct' lattice # as the one which results from this autoindex step. xds_inp = open('XDS.INP', 'w') for record in records: xds_inp.write('%s\n' % record) xds_inp.write('SPOT_RANGE= %d %d\n' % firstlast) xds_inp.close() output = rj_run_job('xds', [], []) cell = rj_parse_idxref_lp(open('IDXREF.LP', 'r').readlines()) result = lattice_symmetry(cell) lattice = sort_lattices(result.keys())[-1] score = result[lattice]['penalty'] metrics = [] spacings = [] phis = [float(j + 1) for j in range(10, 45)] image_numbers = [] for p in phis: result = calculate_images(images, phi, p) if phi * (result[-1][-1] - result[0][0] + 1) > 90.0: continue if not result in image_numbers: image_numbers.append(result) for result in image_numbers: spacing = nint(phi * (result[1][0] - result[0][0])) spacings.append(spacing) xds_inp = open('XDS.INP', 'w') for record in records: xds_inp.write('%s\n' % record) for pair in result: xds_inp.write('SPOT_RANGE= %d %d\n' % pair) xds_inp.close() output = rj_run_job('xds', [], []) cell = rj_parse_idxref_lp(open('IDXREF.LP', 'r').readlines()) result = lattice_symmetry(cell) l = sort_lattices(result.keys())[-1] if l != lattice: raise RuntimeError, 'cell refinement gave wrong lattice' metrics.append(result[l]['penalty']) return metrics, spacings, score
def phi_spacing(labelit_log): # 3 images per wedge, maximum of 30 => 1 to 10 wedges. beam, lattice, metric, cell, image = rj_parse_labelit_log_file(labelit_log) template, directory = rj_get_template_directory(image) images = rj_find_matching_images(image) phi = rj_get_phi(image) if lattice == 'aP': raise RuntimeError, 'triclinic lattices useless' # right, what I want to do is autoindex with images at 0, 45, 90 or # thereabouts (in P1), then do the cell refinement, then score the # resulting cell constants ai_images = calculate_images_ai(images, phi, 3) metrics = [] spacings = [] phis = [float(j + 1) for j in range(10, 45)] image_numbers = [] for p in phis: result = calculate_images(images, phi, p) if phi * (result[-1][-1] - result[0][0] + 1) > 90.0: continue if not result in image_numbers: image_numbers.append(result) for result in image_numbers: # first autoindex commands spacing = nint(phi * (result[1][0] - result[0][0])) spacings.append(spacing) commands = [ 'template %s' % template, 'directory %s' % directory, 'beam %f %f' % beam] commands.append('symm P1') for image in ai_images: commands.append('autoindex dps refine image %d' % image) commands.append('mosaic estimate') commands.append('go') # the cell refinement commands commands.append('postref multi segments 3') for pair in result: commands.append('process %d %d' % pair) commands.append('go') output = rj_run_job('ipmosflm-7.0.3', [], commands) try: cell, mosaic = rj_parse_mosflm_cr_log(output) except RuntimeError, e: for record in output: print record[:-1] raise e result = lattice_symmetry(cell) l = sort_lattices(result.keys())[-1] if l != lattice: raise RuntimeError, 'cell refinement gave wrong lattice' metrics.append(result[l]['penalty'])