def test_evaluate_mrp(self):
        start = Dynamic({s: 0.0 for s in self.finite_flip_flop.states()})

        v = iterate.converged(
            evaluate_mrp(
                self.finite_flip_flop,
                γ=0.99,
                approx_0=start,
                non_terminal_states_distribution=Choose(
                    set(self.finite_flip_flop.states())),
                num_state_samples=5,
            ),
            done=lambda a, b: a.within(b, 1e-4),
        )

        self.assertEqual(len(v.values_map), 2)

        for s in v.values_map:
            self.assertLess(abs(v(s) - 170), 1.0)

        v_finite = iterate.converged(
            evaluate_finite_mrp(self.finite_flip_flop, γ=0.99, approx_0=start),
            done=lambda a, b: a.within(b, 1e-4),
        )

        assert_allclose(v.evaluate([True, False]),
                        v_finite.evaluate([True, False]),
                        rtol=0.01)
예제 #2
0
    def test_evaluate_mrp(self):
        mrp_vf1: np.ndarray = self.implied_mrp.get_value_function_vec(
            self.gamma)
        # print({s: mrp_vf1[i] for i, s in enumerate(self.states)})

        fa = Dynamic({s: 0.0 for s in self.states})
        mrp_finite_fa = iterate.converged(
            evaluate_finite_mrp(self.implied_mrp, self.gamma, fa),
            done=lambda a, b: a.within(b, 1e-4),
        )
        # print(mrp_finite_fa.values_map)
        mrp_vf2: np.ndarray = mrp_finite_fa.evaluate(self.states)

        self.assertLess(max(abs(mrp_vf1 - mrp_vf2)), 0.001)

        mrp_fa = iterate.converged(
            evaluate_mrp(
                self.implied_mrp,
                self.gamma,
                fa,
                Choose(self.states),
                num_state_samples=30,
            ),
            done=lambda a, b: a.within(b, 0.1),
        )
        # print(mrp_fa.values_map)
        mrp_vf3: np.ndarray = mrp_fa.evaluate(self.states)
        self.assertLess(max(abs(mrp_vf1 - mrp_vf3)), 1.0)
예제 #3
0
파일: prob_5.2.py 프로젝트: lkourti/RL-book
    def update(vf_policy: Tuple[FunctionApprox[S], ThisPolicy[S, A]]) \
            -> Tuple[FunctionApprox[S], ThisPolicy[S, A]]:

        nt_states: Sequence[S] = non_terminal_states_distribution\
            .sample_n(num_state_samples)

        vf, pi = vf_policy
        mrp: MarkovRewardProcess[S] = mdp.apply_policy(pi)
        new_vf: FunctionApprox[S] = converged(
            evaluate_mrp(mrp, γ, vf, non_terminal_states_distribution, num_state_samples),
            done=lambda a, b: a.within(b, 1e-4)
        )

        def return_(s_r: Tuple[S, float]) -> float:
            s1, r = s_r
            return r + γ * new_vf.evaluate([s1]).item()

        return (new_vf.update([(s, max(mdp.step(s, a).expectation(return_)
                                       for a in mdp.actions(s))) for s in nt_states]),
                ThisPolicy(mdp, return_))