def test_train(self): memory_init_size = 20 num_steps = 1000 agent = NFSPAgent(num_actions=2, state_shape=[2], hidden_layers_sizes=[10, 10], reservoir_buffer_capacity=50, batch_size=4, min_buffer_size_to_learn=memory_init_size, q_replay_memory_size=50, q_replay_memory_init_size=memory_init_size, q_batch_size=4, q_mlp_layers=[10, 10], device=torch.device('cpu')) predicted_action, _ = agent.eval_step({ 'obs': np.random.random_sample((2, )), 'legal_actions': { 0: None, 1: None }, 'raw_legal_actions': ['call', 'raise'] }) self.assertGreaterEqual(predicted_action, 0) self.assertLessEqual(predicted_action, 1) for _ in range(num_steps): agent.sample_episode_policy() predicted_action = agent.step({ 'obs': np.random.random_sample((2, )), 'legal_actions': { 0: None, 1: None } }) self.assertGreaterEqual(predicted_action, 0) self.assertLessEqual(predicted_action, 1) ts = [{ 'obs': np.random.random_sample((2, )), 'legal_actions': { 0: None, 1: None } }, np.random.randint(2), 0, { 'obs': np.random.random_sample((2, )), 'legal_actions': { 0: None, 1: None }, 'raw_legal_actions': ['call', 'raise'] }, True] agent.feed(ts)
def test_train(self): norm_step = 100 memory_init_size = 20 step_num = 1000 sess = tf.InteractiveSession() tf.Variable(0, name='global_step', trainable=False) agent = NFSPAgent(sess=sess, scope='nfsp', action_num=2, state_shape=[2], hidden_layers_sizes=[10, 10], reservoir_buffer_capacity=50, batch_size=4, min_buffer_size_to_learn=memory_init_size, q_replay_memory_size=50, q_replay_memory_init_size=memory_init_size, q_batch_size=4, q_norm_step=norm_step, q_mlp_layers=[10, 10]) sess.run(tf.global_variables_initializer()) predicted_action = agent.eval_step({ 'obs': np.random.random_sample((2, )), 'legal_actions': [0, 1] }) self.assertGreaterEqual(predicted_action, 0) self.assertLessEqual(predicted_action, 1) for step in range(step_num): agent.sample_episode_policy() predicted_action = agent.step({ 'obs': np.random.random_sample((2, )), 'legal_actions': [0, 1] }) self.assertGreaterEqual(predicted_action, 0) self.assertLessEqual(predicted_action, 1) ts = [{ 'obs': np.random.random_sample((2, )), 'legal_actions': [0, 1] }, np.random.randint(2), 0, { 'obs': np.random.random_sample((2, )), 'legal_actions': [0, 1] }, True] agent.feed(ts) if step > norm_step + memory_init_size: agent.train_rl() agent.train_sl() sess.close() tf.reset_default_graph()
# Count the number of steps step_counters = [0 for _ in range(env.player_num)] # Init a Logger to plot the learning curve logger = Logger(xlabel='timestep', ylabel='reward', legend='NFSP on Limit Texas Holdem', log_path=log_path, csv_path=csv_path) for episode in range(episode_num): # First sample a policy for the episode for agent in agents: agent.sample_episode_policy() # Generate data from the environment trajectories, _ = env.run(is_training=True) # Feed transitions into agent memory, and train the agent for i in range(env.player_num): for ts in trajectories[i]: agents[i].feed(ts) step_counters[i] += 1 # Train the agent train_count = step_counters[i] - (memory_init_size + norm_step) if train_count > 0 and train_count % 64 == 0: rl_loss = agents[i].train_rl() sl_loss = agents[i].train_sl()
def train_mahjong(): # Make environment env = rlcard.make('mahjong', config={'seed': 0}) eval_env = rlcard.make('mahjong', config={'seed': 0}) # Set the iterations numbers and how frequently we evaluate the performance evaluate_every = 1000 evaluate_num = 1000 episode_num = 10000 # The intial memory size memory_init_size = 1000 # Train the agent every X steps train_every = 64 # The paths for saving the logs and learning curves log_dir = './experiments/mahjong_nfsp_result/' # Set a global seed set_global_seed(0) with tf.Session() as sess: # Initialize a global step global_step = tf.Variable(0, name='global_step', trainable=False) # Set up the agents agents = [] for i in range(env.player_num): agent = NFSPAgent(sess, scope='nfsp' + str(i), action_num=env.action_num, state_shape=env.state_shape, hidden_layers_sizes=[512, 512], anticipatory_param=0.5, batch_size=256, rl_learning_rate=0.00005, sl_learning_rate=0.00001, min_buffer_size_to_learn=memory_init_size, q_replay_memory_size=int(1e5), q_replay_memory_init_size=memory_init_size, train_every=train_every, q_train_every=train_every, q_batch_size=256, q_mlp_layers=[512, 512]) agents.append(agent) random_agent = RandomAgent(action_num=eval_env.action_num) env.set_agents(agents) eval_env.set_agents( [agents[0], random_agent, random_agent, random_agent]) # Initialize global variables sess.run(tf.global_variables_initializer()) # Init a Logger to plot the learning curvefrom rlcard.agents.random_agent import RandomAgent logger = Logger(log_dir) for episode in tqdm(range(episode_num)): # First sample a policy for the episode for agent in agents: agent.sample_episode_policy() # Generate data from the environment trajectories, _ = env.run(is_training=True) # Feed transitions into agent memory, and train the agent for i in range(env.player_num): for ts in trajectories[i]: agents[i].feed(ts) # Evaluate the performance. Play with random agents. if episode % evaluate_every == 0: logger.log_performance(env.timestep, tournament(eval_env, evaluate_num)[0]) # Close files in the logger logger.close_files() # Plot the learning curve logger.plot('NFSP') # Save model save_dir = 'models/mahjong_nfsp' if not os.path.exists(save_dir): os.makedirs(save_dir) saver = tf.train.Saver() saver.save(sess, os.path.join(save_dir, 'model'))