예제 #1
0
def run(opt):
    """ Entry Point. """

    rlog.init(opt.experiment, path=opt.out_dir, tensorboard=True)
    rlog.addMetrics(
        rlog.AvgMetric("trn_R_ep", metargs=["trn_reward", "trn_done"]),
        rlog.AvgMetric("trn_loss", metargs=["trn_loss", 1]),
        rlog.FPSMetric("lrn_tps", metargs=["lrn_steps"]),
        rlog.AvgMetric("val_R_ep", metargs=["reward", "done"]),
        rlog.AvgMetric("val_avg_step", metargs=[1, "done"]),
        rlog.FPSMetric("val_fps", metargs=["val_frames"]),
    )

    opt = game_settings_(opt)
    env, agent = experiment_factory(opt)

    rlog.info(ioutil.config_to_string(opt))
    ioutil.save_config(opt, opt.out_dir)

    steps = 0
    for ep in range(1, opt.env.episodes + 1):
        steps = train_one_ep(env, agent, steps, opt.update_freq, opt.target_update_freq)

        if ep % opt.valid_freq == 0:
            rlog.traceAndLog(ep)
            validate(env, agent, opt.valid_episodes)
            rlog.traceAndLog(ep)
예제 #2
0
def configure_logger(opt):
    """ Configures the logger.
    """
    rlog.init(opt.experiment, path=opt.out_dir, tensorboard=True)
    train_log = rlog.getLogger(opt.experiment + ".train")
    train_log.addMetrics(
        rlog.AvgMetric("R_ep", metargs=["reward", "done"]),
        rlog.AvgMetric("V_step", metargs=["value", 1]),
        rlog.AvgMetric("v_mse_loss", metargs=["v_mse", 1]),
        rlog.AvgMetric("v_hub_loss", metargs=["v_hub", 1]),
        rlog.SumMetric("ep_cnt", resetable=False, metargs=["done"]),
        rlog.AvgMetric("steps_ep", metargs=["step_no", "done"]),
        rlog.FPSMetric("fps", metargs=["frame_no"]),
    )
    train_log.log_fmt = (
        "[{0:6d}/{ep_cnt:5d}] R/ep={R_ep:8.2f}, V/step={V_step:8.2f}" +
        " | steps/ep={steps_ep:8.2f}, fps={fps:8.2f}.")
    val_log = rlog.getLogger(opt.experiment + ".valid")
    val_log.addMetrics(
        rlog.AvgMetric("R_ep", metargs=["reward", "done"]),
        rlog.AvgMetric("RR_ep",
                       resetable=False,
                       eps=0.8,
                       metargs=["reward", "done"]),
        rlog.AvgMetric("V_step", metargs=["value", 1]),
        rlog.AvgMetric("steps_ep", metargs=["frame_no", "done"]),
        rlog.FPSMetric("fps", metargs=["frame_no"]),
    )
    if hasattr(opt.log, "detailed") and opt.log.detailed:
        val_log.addMetrics(
            rlog.ValueMetric("Vhist", metargs=["value"], tb_type="histogram"))
    val_log.log_fmt = (
        "@{0:6d}        R/ep={R_ep:8.2f}, RunR/ep={RR_ep:8.2f}" +
        " | steps/ep={steps_ep:8.2f}, fps={fps:8.2f}.")
예제 #3
0
def run(opt):
    """ Entry point of the experiment """

    # no need to run this for all the seeds
    if opt.run_id not in [0, 1, 2]:
        return

    # this is a bit of a hack, it would be nice to change it
    # when launching the experiment. It generally only affects the logger.
    if "JyxNorm" not in opt.experiment:
        opt.experiment += "--JyxNorm"

    rlog.init(opt.experiment, path=opt.out_dir, relative_time=True)
    rlog.addMetrics(
        rlog.AvgMetric("Jyx_norm_avg", metargs=["Jyx_norm", 1]),
        rlog.MaxMetric("Jyx_norm_max", metargs=["Jyx_norm"]),
        rlog.AvgMetric("val_R_ep", metargs=["reward", "done"]),
        rlog.SumMetric("val_ep_cnt", metargs=["done"]),
        rlog.AvgMetric("val_avg_step", metargs=[1, "done"]),
        rlog.FPSMetric("val_fps", metargs=["val_frames"]),
    )

    opt.device = "cuda" if torch.cuda.is_available() else "cpu"

    root = Path(opt.out_dir)
    ckpt_paths = sorted(root.glob("**/checkpoint*"))

    rlog.info("Begin empirical estimation of norm(Jyx).")
    rlog.info("Runing experiment on {}.".format(opt.device))
    rlog.info("Found {:3d} checkpoints.".format(len(ckpt_paths)))

    # Sample only every other third checkpoint
    if (Path(opt.out_dir) / "max_ckpt").exists():
        ckpt_paths = [
            p
            for p in ckpt_paths
            if int(p.stem.split("_")[1])
            == int((Path(opt.out_dir) / "max_ckpt").read_text())
        ]
        rlog.info("IMPORTANT! Found max_ckpt @{}.".format(ckpt_paths[0]))
    else:
        if "MinAtar" in opt.game:
            ckpt_paths = ckpt_paths[0::3]
            rlog.warning("IMPORTANT! Sampling only every other third checkpoint.")
        else:
            ckpt_paths = ckpt_paths[0::5]
            rlog.warning("IMPORTANT! Sampling only every other fifth checkpoint.")

    for ckpt_path in ckpt_paths:
        env = get_env(opt, mode="testing")
        policy, step = load_policy(env, ckpt_path, deepcopy(opt))

        check_lipschitz_constant(policy, env, opt.valid_step_cnt)
        rlog.traceAndLog(step=step)
예제 #4
0
def main(cmdl):
    """ Entry point.
    """
    opt = read_config(Path(cmdl.experiment_path) / "cfg.yaml")
    chkpt_paths = sorted(
        Path(cmdl.experiment_path).glob("*.pth"),
        key=lambda path: int(path.stem.split("_")[2]),
    )
    chkpt_paths = [(int(path.stem.split("_")[2]), path)
                   for path in chkpt_paths]

    print(config_to_string(cmdl))
    print(config_to_string(opt))

    if cmdl.build_val_dset:
        perf = [(torch.load(path)["R/ep"], path) for _, path in chkpt_paths]
        best_score, path = max(perf, key=lambda x: x[0])
        print(f"Loading {path} with total return {best_score}.")
        env, policy = configure_eval(cmdl, opt, path)
        achlioptas = _get_achlioptas(8, 4)
        val_dset = build_validation_dset(
            env,
            policy,
            opt.gamma,
            partial(_hash, decimals=cmdl.decimals, rnd_proj=achlioptas),
        )

        val_dset["meta"]["agent"] = path
        val_dset["meta"]["decimals"] = cmdl.decimals
        val_dset["meta"]["rnd_proj"] = achlioptas
        for k, v in val_dset["meta"].items():
            print(f"{k:12}", v)
        torch.save(val_dset, f"./val_dsets/{env.spec.id}.pkl")
    elif cmdl.offline_validation:
        rlog.init(opt.experiment, path=opt.out_dir, tensorboard=True)
        log = rlog.getLogger(opt.experiment + ".off_valid")
        log.addMetrics([
            rlog.AvgMetric("V_step", metargs=["value", 1]),
            rlog.AvgMetric("off_mse", metargs=["off_mse", 1]),
        ])
        log.info("Loading dataset...")
        dset = torch.load(f"./val_dsets/{opt.env_name}.pkl")
        for step, path in chkpt_paths:
            env, policy = configure_eval(cmdl, opt, path)
            offline_validation(step, policy, dset, opt)
    else:
        for step, path in chkpt_paths:
            env, policy = configure_eval(cmdl, opt, path)
            avg_return = greedy_validation(env, policy, opt.gamma)
            print("[{0:8d}]   R/ep={1:8.2f}.".format(step, avg_return))
예제 #5
0
def configure_logger(opt):
    rlog.init(opt.experiment, path=opt.out_dir)
    train_log = rlog.getLogger(opt.experiment + ".train")
    train_log.addMetrics([
        rlog.AvgMetric("R/ep", metargs=["reward", "done"]),
        rlog.SumMetric("ep_cnt", resetable=False, metargs=["done"]),
        rlog.AvgMetric("steps/ep", metargs=["step_no", "done"]),
        rlog.FPSMetric("learning_fps", metargs=["frame_no"]),
    ])
    test_log = rlog.getLogger(opt.experiment + ".test")
    test_log.addMetrics([
        rlog.AvgMetric("R/ep", metargs=["reward", "done"]),
        rlog.SumMetric("ep_cnt", resetable=False, metargs=["done"]),
        rlog.AvgMetric("steps/ep", metargs=["frame_no", "done"]),
        rlog.FPSMetric("test_fps", metargs=["frame_no"]),
        rlog.MaxMetric("max_q", metargs=["qval"]),
    ])
예제 #6
0
def run(opt):
    """ Entry point """
    if "sRank" not in opt.experiment:
        opt.experiment += "--sRank"

    rlog.init(opt.experiment, path=opt.out_dir, relative_time=True)
    rlog.addMetrics(
        rlog.AvgMetric("avg_rank", metargs=["rank", 1]),
        # rlog.ValueMetric("rank", metargs=["rank"]),
        rlog.AvgMetric("val_R_ep", metargs=["reward", "done"]),
        rlog.SumMetric("val_ep_cnt", metargs=["done"]),
        rlog.AvgMetric("val_avg_step", metargs=[1, "done"]),
        rlog.FPSMetric("val_fps", metargs=["val_frames"]),
    )

    opt.device = "cuda" if torch.cuda.is_available() else "cpu"

    root = Path(opt.out_dir)
    ckpt_paths = sorted(root.glob("**/checkpoint*"))

    rlog.info("Begin empirical estimation of feature matrix rank.")
    rlog.info("Runing experiment on {}".format(opt.device))
    rlog.info("Found {:3d} checkpoints.".format(len(ckpt_paths)))

    # Sample only every other third checkpoint
    if "MinAtar" in opt.game:
        ckpt_paths = ckpt_paths[0::3]
        rlog.warning("IMPORTANT! Sampling only every other third checkpoint.")
    else:
        ckpt_paths = ckpt_paths[0::5]
        rlog.warning("IMPORTANT! Sampling only every other fifth checkpoint.")

    sampled_steps = min(opt.valid_step_cnt, opt.train_step_cnt)
    rlog.info(
        "Sampling {:6d} steps from the environment".format(sampled_steps))

    for ckpt_path in ckpt_paths:

        env = get_env(opt, mode="testing")
        policy, step = load_policy(env, ckpt_path, deepcopy(opt))
        check_effective_features_rank(policy, env, sampled_steps)

        rlog.traceAndLog(step=step)
예제 #7
0
def run(opt):
    """ Entry point of the program. """

    if __debug__:
        print(
            clr(
                "Code might have assertions. Use -O in liftoff when running stuff.",
                color="red",
                attrs=["bold"],
            ))

    ioutil.create_paths(opt)

    sticky_schedule = OrderedDict([(int(s), float(p))
                                   for (s, p) in opt.sticky_schedule])
    assert 1 in sticky_schedule

    rlog.init(opt.experiment, path=opt.out_dir, tensorboard=True)
    train_loggers = OrderedDict()
    for i, epoch in enumerate(sticky_schedule.keys()):
        train_loggers[epoch] = train_log = rlog.getLogger(
            f"{opt.experiment}.{i:d}")
        train_log.addMetrics(
            rlog.AvgMetric("trn_R_ep", metargs=["trn_reward", "trn_done"]),
            rlog.SumMetric("trn_ep_cnt", metargs=["trn_done"]),
            rlog.AvgMetric("trn_loss", metargs=["trn_loss", 1]),
            rlog.FPSMetric("trn_tps", metargs=["trn_steps"]),
            rlog.ValueMetric("trn_sticky_action_prob",
                             metargs=["trn_sticky_action_prob"]),
            rlog.FPSMetric("lrn_tps", metargs=["lrn_steps"]),
            rlog.AvgMetric("val_R_ep", metargs=["reward", "done"]),
            rlog.SumMetric("val_ep_cnt", metargs=["done"]),
            rlog.AvgMetric("val_avg_step", metargs=[1, "done"]),
            rlog.FPSMetric("val_fps", metargs=["val_frames"]),
            rlog.ValueMetric("val_sticky_action_prob",
                             metargs=["val_sticky_action_prob"]),
        )

    # Initialize the objects we will use during training.
    env, (replay, policy_improvement,
          policy_evaluation) = experiment_factory(opt)

    rlog.info("\n\n{}\n\n{}\n\n{}".format(env, replay,
                                          policy_evaluation.estimator))
    rlog.info("\n\n{}\n\n{}".format(policy_improvement, policy_evaluation))

    if opt.estimator.args.get("spectral", None) is not None:
        for k in policy_evaluation.estimator.get_spectral_norms().keys():
            # k = f"min{str(k)[1:]}"
            rlog.addMetrics(rlog.ValueMetric(k, metargs=[k]))

    # if we loaded a checkpoint
    if Path(opt.out_dir).joinpath("replay.gz").is_file():

        # sometimes the experiment is intrerupted while saving the replay
        # buffer and it gets corrupted. Therefore we attempt restoring
        # from the previous checkpoint and replay.
        try:
            idx = replay.load(Path(opt.out_dir) / "replay.gz")
            ckpt = ioutil.load_checkpoint(opt.out_dir, idx=idx)
            rlog.info(f"Loaded most recent replay (step {idx}).")
        except:
            gc.collect()
            rlog.info("Last replay gzip is faulty.")
            idx = replay.load(Path(opt.out_dir) / "prev_replay.gz")
            ckpt = ioutil.load_checkpoint(opt.out_dir, idx=idx)
            rlog.info(f"Loading a previous snapshot (step {idx}).")

        # load state dicts

        # load state dicts
        ioutil.special_conv_uv_buffer_fix(policy_evaluation.estimator,
                                          ckpt["estimator_state"])
        policy_evaluation.estimator.load_state_dict(ckpt["estimator_state"])
        ioutil.special_conv_uv_buffer_fix(policy_evaluation.target_estimator,
                                          ckpt["target_estimator_state"])
        policy_evaluation.target_estimator.load_state_dict(
            ckpt["target_estimator_state"])
        policy_evaluation.optimizer.load_state_dict(ckpt["optim_state"])

        last_epsilon = None
        for _ in range(ckpt["step"]):
            last_epsilon = next(policy_improvement.epsilon)
        rlog.info(f"Last epsilon: {last_epsilon}.")
        # some counters
        last_epoch = ckpt["step"] // opt.train_step_cnt
        rlog.info(f"Resuming from epoch {last_epoch}.")
        start_epoch = last_epoch + 1
        steps = ckpt["step"]
    else:
        steps = 0
        start_epoch = 1
        # add some hardware and git info, log and save
        opt = ioutil.add_platform_info(opt)

    rlog.info("\n" + ioutil.config_to_string(opt))
    ioutil.save_config(opt, opt.out_dir)

    # Start training

    last_state = None  # used by train_one_epoch to know how to resume episode.
    for epoch in range(start_epoch, opt.epoch_cnt + 1):
        last_sched_epoch = max(ep for ep in sticky_schedule if ep <= epoch)
        print(f"StickyActProb goes from {env.sticky_action_prob}"
              f" to {sticky_schedule[last_sched_epoch]}")
        env.sticky_action_prob = sticky_schedule[last_sched_epoch]
        crt_logger = train_loggers[last_sched_epoch]

        # train for 250,000 steps
        steps, last_state = train_one_epoch(
            env,
            (replay, policy_improvement, policy_evaluation),
            opt.train_step_cnt,
            opt.update_freq,
            opt.target_update_freq,
            opt,
            crt_logger,
            total_steps=steps,
            last_state=last_state,
        )
        crt_logger.put(trn_sticky_action_prob=env.sticky_action_prob)
        crt_logger.traceAndLog(epoch * opt.train_step_cnt)

        # validate for 125,000 steps
        for sched_epoch, eval_logger in train_loggers.items():
            eval_env = get_env(  # this doesn't work, fute-m-aș în ele de wrappere
                opt,
                mode="testing",
                sticky_action_prob=sticky_schedule[sched_epoch])
            eval_env.sticky_action_prob = sticky_schedule[sched_epoch]
            print(
                f"Evaluating on the env with sticky={eval_env.sticky_action_prob}."
            )
            validate(
                AGENTS[opt.agent.name]["policy_improvement"](
                    policy_improvement.estimator,
                    opt.action_cnt,
                    epsilon=opt.val_epsilon,
                ),
                eval_env,
                opt.valid_step_cnt,
                eval_logger,
            )
            eval_logger.put(
                val_sticky_action_prob=eval_env.sticky_action_prob, )
            eval_logger.traceAndLog(epoch * opt.train_step_cnt)

        # save the checkpoint
        if opt.agent.save:
            ioutil.checkpoint_agent(
                opt.out_dir,
                steps,
                estimator=policy_evaluation.estimator,
                target_estimator=policy_evaluation.target_estimator,
                optim=policy_evaluation.optimizer,
                cfg=opt,
                replay=replay,
                save_replay=(epoch % 8 == 0 or epoch == opt.epoch_cnt),
            )
예제 #8
0
def run(opt):
    """ Entry point of the program. """

    if __debug__:
        print(
            clr(
                "Code might have assertions. Use -O in liftoff when running stuff.",
                color="red",
                attrs=["bold"],
            ))

    ioutil.create_paths(opt)

    rlog.init(opt.experiment,
              path=opt.out_dir,
              tensorboard=True,
              relative_time=True)
    rlog.addMetrics(
        rlog.AvgMetric("trn_R_ep", metargs=["trn_reward", "trn_done"]),
        rlog.SumMetric("trn_ep_cnt", metargs=["trn_done"]),
        rlog.AvgMetric("trn_loss", metargs=["trn_loss", 1]),
        rlog.FPSMetric("trn_tps", metargs=["trn_steps"]),
        rlog.FPSMetric("lrn_tps", metargs=["lrn_steps"]),
        rlog.AvgMetric("val_R_ep", metargs=["reward", "done"]),
        rlog.SumMetric("val_ep_cnt", metargs=["done"]),
        rlog.AvgMetric("val_avg_step", metargs=[1, "done"]),
        rlog.FPSMetric("val_fps", metargs=["val_frames"]),
    )

    # Initialize the objects we will use during training.
    env, (replay, policy_improvement,
          policy_evaluation) = experiment_factory(opt)

    guts = [
        env,
        replay,
        policy_evaluation.estimator,
        policy_evaluation.optimizer,
        policy_improvement,
        policy_evaluation,
    ]
    rlog.info(("\n\n{}" * len(guts)).format(*guts))

    if opt.estimator.args.get("spectral", None) is not None:
        for k in policy_evaluation.estimator.get_spectral_norms().keys():
            # k = f"min{str(k)[1:]}"
            rlog.addMetrics(rlog.ValueMetric(k, metargs=[k]))

    # if we loaded a checkpoint
    if Path(opt.out_dir).joinpath("replay.gz").is_file():

        # sometimes the experiment is intrerupted while saving the replay
        # buffer and it gets corrupted. Therefore we attempt restoring
        # from the previous checkpoint and replay.
        try:
            idx = replay.load(Path(opt.out_dir) / "replay.gz")
            ckpt = ioutil.load_checkpoint(opt.out_dir, idx=idx)
            rlog.info(f"Loaded most recent replay (step {idx}).")
        except:
            gc.collect()
            rlog.info("Last replay gzip is faulty.")
            idx = replay.load(Path(opt.out_dir) / "prev_replay.gz")
            ckpt = ioutil.load_checkpoint(opt.out_dir, idx=idx)
            rlog.info(f"Loading a previous snapshot (step {idx}).")

        # load state dicts

        # load state dicts
        ioutil.special_conv_uv_buffer_fix(policy_evaluation.estimator,
                                          ckpt["estimator_state"])
        policy_evaluation.estimator.load_state_dict(ckpt["estimator_state"])
        ioutil.special_conv_uv_buffer_fix(policy_evaluation.target_estimator,
                                          ckpt["target_estimator_state"])
        policy_evaluation.target_estimator.load_state_dict(
            ckpt["target_estimator_state"])
        policy_evaluation.optimizer.load_state_dict(ckpt["optim_state"])

        last_epsilon = None
        for _ in range(ckpt["step"]):
            last_epsilon = next(policy_improvement.epsilon)
        rlog.info(f"Last epsilon: {last_epsilon}.")
        # some counters
        last_epoch = ckpt["step"] // opt.train_step_cnt
        rlog.info(f"Resuming from epoch {last_epoch}.")
        start_epoch = last_epoch + 1
        steps = ckpt["step"]
    else:
        steps = 0
        start_epoch = 1
        # add some hardware and git info, log and save
        opt = ioutil.add_platform_info(opt)

    rlog.info("\n" + ioutil.config_to_string(opt))
    ioutil.save_config(opt, opt.out_dir)

    # Start training

    last_state = None  # used by train_one_epoch to know how to resume episode.
    for epoch in range(start_epoch, opt.epoch_cnt + 1):

        # train for 250,000 steps
        steps, last_state = train_one_epoch(
            env,
            (replay, policy_improvement, policy_evaluation),
            opt.train_step_cnt,
            opt.update_freq,
            opt.target_update_freq,
            opt,
            rlog.getRootLogger(),
            total_steps=steps,
            last_state=last_state,
        )
        rlog.traceAndLog(epoch * opt.train_step_cnt)

        # validate for 125,000 steps
        validate(
            AGENTS[opt.agent.name]["policy_improvement"](
                policy_improvement.estimator,
                opt.action_cnt,
                epsilon=opt.val_epsilon),
            get_env(opt, mode="testing"),
            opt.valid_step_cnt,
            rlog.getRootLogger(),
        )
        rlog.traceAndLog(epoch * opt.train_step_cnt)

        # save the checkpoint
        if opt.agent.save:
            ioutil.checkpoint_agent(
                opt.out_dir,
                steps,
                estimator=policy_evaluation.estimator,
                target_estimator=policy_evaluation.target_estimator,
                optim=policy_evaluation.optimizer,
                cfg=opt,
                replay=replay,
                save_replay=(epoch % 8 == 0 or epoch == opt.epoch_cnt),
            )
예제 #9
0
def main():
    # get the root logger, preconfigured to log to the console,
    # to a text file, a pickle and a tensorboard protobuf.
    experiment_path = get_experiment_path()
    rlog.init("dqn", path=experiment_path, tensorboard=True)
    rlog.info("Logging application level stuff.")
    rlog.info("Log artifacts will be saved in %s", experiment_path)

    rlog.addMetrics(
        # counts each time it receives a `done=True`, aka counts episodes
        rlog.SumMetric("ep_cnt", resetable=False, metargs=["done"]),
        # sums up all the `reward=value` it receives and divides it
        # by the number of `done=True`, aka mean reward per episode
        rlog.AvgMetric("R_per_ep", metargs=["reward", "done"]),
    )

    for step in range(5):
        # probably not a good idea to call this every step if it is a hot loop?
        # also this will not be logged to the console or to the text file
        # since the default log-level for these two is INFO.
        rlog.trace(step=step, aux_loss=7.23 - step)

    # but we can register metrics that will accumulate traced events
    # and summarize them. Each Metric accepts a name and some metargs
    # that tells it which arguments received by the `put` call bellow
    # to accumulate and summarize.
    rlog.addMetrics(
        # counts each time it receives a `done=True`, aka counts episodes
        rlog.SumMetric("ep_cnt", resetable=False, metargs=["done"]),
        # sums up all the `reward=value` it receives and divides it
        # by the number of `done=True`, aka mean reward per episode
        rlog.AvgMetric("R_per_ep", metargs=["reward", "done"]),
        # same but keeps a running average instead (experimental).
        rlog.AvgMetric("RunR", eps=0.9, metargs=["reward", "done"]),
        # same as above but now we divide by the number of rewards
        rlog.AvgMetric("R_per_step", metargs=["reward", 1]),
        # same but with clipped rewards (to +- 1)
        rlog.AvgMetric("rw_per_ep", metargs=["clip(reward)", "done"]),
        # computes the no of frames per second
        rlog.FPSMetric("train_fps", metargs=["frame_no"]),
        # caches all the values it receives and inserts them into a
        # tensorboad.summary.histogram every time you call `log.trace`
        rlog.ValueMetric("gaussians", metargs=["sample"], tb_type="histogram"),
    )

    mean = 0
    for step in range(1, 300_001):

        # make a step in the "environment"
        reward, done = reward_following_policy(step)

        # sample from a gaussian for showcasing the histogram
        sample = random.gauss(mean, 0.1)

        # simply trace all the values you passed as `metargs` above.
        # the logger will know how to dispatch each argument.
        rlog.put(reward=reward, done=done, frame_no=1, sample=sample)

        if step % 10_000 == 0:
            # this is the call that dumps everything to the logger.
            summary = rlog.summarize()
            rlog.trace(step=step, **summary)
            # rlog.info(
            #     "{0:6d}, ep {ep_cnt:3d}, RunR/ep{RunR:8.2f}  |  rw/ep{R_per_ep:8.2f}.".format(
            #         step, **summary
            #     )
            # )
            # rlog.reset()
            rlog.traceAndLog(step)
            mean += 1