def setpara_bdsm(self, img): from types import ClassType, TypeType chain = [ Op_preprocess, Op_rmsimage(), Op_threshold(), Op_islands(), Op_gausfit(), Op_gaul2srl(), Op_make_residimage() ] opts = img.opts.to_dict() if img.opts.pi_thresh_isl != None: opts['thresh_isl'] = img.opts.pi_thresh_isl if img.opts.pi_thresh_pix != None: opts['thresh_pix'] = img.opts.pi_thresh_pix opts['thresh'] = 'hard' opts['polarisation_do'] = False opts['filename'] = '' opts['detection_image'] = '' ops = [] for op in chain: if isinstance(op, (ClassType, TypeType)): ops.append(op()) else: ops.append(op) return ops, opts
def setpara_bdsm(self, img): from types import ClassType, TypeType chain = [ Op_preprocess, Op_rmsimage(), Op_threshold(), Op_islands(), Op_gausfit(), Op_gaul2srl(), Op_make_residimage() ] opts = {'thresh': 'hard'} opts['thresh_pix'] = img.thresh_pix opts['kappa_clip'] = 3.0 opts['rms_map'] = img.opts.rms_map opts['mean_map'] = img.opts.mean_map opts['thresh_isl'] = img.opts.thresh_isl opts['minpix_isl'] = 6 opts['savefits_rmsim'] = False opts['savefits_meanim'] = False opts['savefits_rankim'] = False opts['savefits_normim'] = False opts['polarisation_do'] = False opts['aperture'] = None opts['group_by_isl'] = img.opts.group_by_isl opts['quiet'] = img.opts.quiet opts['ncores'] = img.opts.ncores opts['flag_smallsrc'] = False opts['flag_minsnr'] = 0.2 opts['flag_maxsnr'] = 1.2 opts['flag_maxsize_isl'] = 2.5 opts['flag_bordersize'] = 0 opts['flag_maxsize_bm'] = 50.0 opts['flag_minsize_bm'] = 0.2 opts['flag_maxsize_fwhm'] = 0.5 opts['bbs_patches'] = img.opts.bbs_patches opts['filename'] = '' opts['output_all'] = img.opts.output_all opts['verbose_fitting'] = img.opts.verbose_fitting opts['split_isl'] = False opts['peak_fit'] = True opts['peak_maxsize'] = 30.0 opts['detection_image'] = '' opts['verbose_fitting'] = img.opts.verbose_fitting ops = [] for op in chain: if isinstance(op, (ClassType, TypeType)): ops.append(op()) else: ops.append(op) return ops, opts
def rms_spectrum(self, img, image): from rmsimage import Op_rmsimage global bar1 mylog = img.mylog nchan = image.shape[0] rms_map = img.use_rms_map if img.opts.kappa_clip is None: kappa = -img.pixel_beamarea() else: kappa = img.opts.kappa_clip map_opts = (kappa, img.rms_box, img.opts.spline_rank) if rms_map: rms_spec = N.zeros(image.shape, dtype=N.float32) mean = N.zeros(image.shape[1:], dtype=N.float32) rms = N.zeros(image.shape[1:], dtype=N.float32) median_rms = N.zeros(nchan) for ichan in range(nchan): if bar1.started: bar1.increment() dumi = Op_rmsimage() Op_rmsimage.map_2d(dumi, image[ichan], mean, rms, None, *map_opts) rms_spec[ichan,:,:] = rms median_rms[ichan] = N.median(rms) else: rms_spec = N.zeros(image.shape, dtype=N.float32) for ichan in range(nchan): if bar1.started: bar1.increment() rms_spec[ichan,:,:] = img.channel_clippedrms[ichan] median_rms = rms_spec str1 = " ".join(["%9.4e" % n for n in img.channel_clippedrms]) if rms_map: mylog.debug('%s %s ' % ('Median rms of channels : ', str1)) mylog.info('RMS image made for each channel') else: mylog.debug('%s %s ' % ('RMS of channels : ', str1)) mylog.info('Clipped rms calculated for each channel') return rms_spec
def setpara_bdsm(self, img, det_file): from types import ClassType, TypeType chain=[Op_readimage(), Op_collapse(), Op_preprocess, Op_rmsimage(), Op_threshold(), Op_islands()] opts = img.opts.to_dict() opts['filename'] = det_file opts['detection_image'] = '' opts['polarisation_do'] = False ops = [] for op in chain: if isinstance(op, (ClassType, TypeType)): ops.append(op()) else: ops.append(op) return ops, opts
from make_residimage import Op_make_residimage from output import Op_outlist from shapefit import Op_shapelets from gaul2srl import Op_gaul2srl from spectralindex import Op_spectralindex from polarisation import Op_polarisation from wavelet_atrous import Op_wavelet_atrous from psf_vary import Op_psf_vary from cleanup import Op_cleanup from _version import __version__ import gc default_chain = [Op_readimage(), Op_collapse(), Op_preprocess(), Op_rmsimage(), Op_threshold(), Op_islands(), Op_gausfit(), Op_wavelet_atrous(), Op_shapelets(), Op_gaul2srl(), Op_spectralindex(), Op_polarisation(), Op_make_residimage(), Op_psf_vary(), Op_outlist(), Op_cleanup() ] fits_chain = default_chain # for legacy scripts