else: ctr = np.load(in_pkl) X_train, X_valid, X_test = ctr["arr_0"], ctr["arr_1"], ctr["arr_2"] sys.stderr.write("X_train shape = %s\n" % str(X_train.shape)) sys.stderr.write("X_valid shape = %s\n" % str(X_valid.shape)) sys.stderr.write("X_test shape = %s\n" % str(X_test.shape)) args = dict() args["seed"] = 0 args["batch_size"] = 128 args["learning_rate"] = 0.01 args["momentum"] = 0.9 args["num_epochs"] = 4000 args["X_train"] = X_train args["X_valid"] = X_valid args["X_test"] = X_test args["update_method"] = rmsprop args["out_pkl"] = out_pkl args["units"] = [2000] #args["out_nonlinearity"] = "sigmoid" args["forget_gate"] = 1.0 args["config"] = "../../configurations/19mar_variable_3.py" experiment.train(args) #sys.stderr.write( "writing to file: %s\n" % (out_pkl) ) #with open(out_pkl, "wb") as f: # pickle.dump(model, f, pickle.HIGHEST_PROTOCOL)
X_train, X_valid, X_test = ctr["arr_0"], ctr["arr_1"], ctr["arr_2"] sys.stderr.write("X_train shape = %s\n" % str(X_train.shape)) sys.stderr.write("X_valid shape = %s\n" % str(X_valid.shape)) sys.stderr.write("X_test shape = %s\n" % str(X_test.shape)) args = dict() args["seed"] = 0 args["batch_size"] = 128 args["learning_rate"] = 0.01 args["momentum"] = 0.9 args["num_epochs"] = 4000 args["X_train"] = X_train args["X_valid"] = X_valid args["X_test"] = X_test args["update_method"] = rmsprop args["out_pkl"] = out_pkl args["units"] = [600] #args["out_nonlinearity"] = "sigmoid" args["forget_gate"] = 1.0 args["config"] = "../../configurations/19mar_variable_3.py" experiment.train(args) #sys.stderr.write( "writing to file: %s\n" % (out_pkl) ) #with open(out_pkl, "wb") as f: # pickle.dump(model, f, pickle.HIGHEST_PROTOCOL)