def sample_text(sess, data_provider, iteration): model = RNNModel(data_provider.vocabulary_size, batch_size=1, sequence_length=1, hidden_layer_size=HIDDEN_LAYER_SIZE, cells_size=CELLS_SIZE, training=False) text = model.sample(sess, data_provider.chars, data_provider.vocabulary, TEXT_SAMPLE_LENGTH)#.encode("utf-8") output = open(output_file, "a") output.write("Iteration: " + str(iteration) + "\n") output.write(str(text) + "\n") output.write("\n") output.close()
def sample_text(sess, data_provider, iteration): model = RNNModel(data_provider.vocabulary_size, batch_size=1, sequence_length=1, hidden_layer_size=HIDDEN_LAYER_SIZE, cells_size=CELLS_SIZE, training=False) text = model.sample(sess, data_provider.chars, data_provider.vocabulary, TEXT_SAMPLE_LENGTH).encode("utf-8") with open(output_file, "a") as output: output.write("Iteration: " + str(iteration) + "\n") output.write(text + "\n") output.write("\n") analysis = get_linguistic_analysis(text) print(analysis) with open(data_dir + "analysis.txt", mode="a", encoding='utf-8') as analysis_file: analysis_file.write("Iteration: " + str(iteration) + "\n") analysis_file.write(analysis) analysis_file.write("\n")
def sample_text(sess, data_provider, iteration): model = RNNModel(data_provider.vocabulary_size, batch_size=1, sequence_length=1, hidden_layer_size=HIDDEN_LAYER_SIZE, cells_size=CELLS_SIZE, training=False) text = model.sample(sess, data_provider.chars, data_provider.vocabulary, TEXT_SAMPLE_LENGTH).encode('utf-8') with open(output_file, 'a') as output: output.write(f'Iteration: {iteration}\n{text}\n\n')