예제 #1
0
    def test_time_series_observation(self):
        def week_agg(date):
            return date.year, date.isocalendar()[1]

        def month_agg(date):
            return date.year, date.month

        ob = rnnmed.data.io.read_time_series_observation(
            open("/mnt/veracrypt1/EHR_DATA/L270-90-raw-measurements.csv"),
            min_sparsity=0.1)

        import random
        random.seed(10)
        random.shuffle(ob)
        n_visits = 10
        generator = observations.time_observation_generator(ob,
                                                            n_visits=n_visits)

        print(len(ob), ob.n_features)
        from rnnmed.visit2visit import visit2visit

        visit2visit(generator,
                    n_features=ob.n_features,
                    n_labels=ob.n_labels,
                    n_timesteps=n_visits,
                    n_hidden=128,
                    max_iter=1000)
예제 #2
0
    def test_med_2_vec_predict(self):
        observations = rnnmed.data.io.read_labeled_observations(
            "test_data/mimic_demo.seq")

        generator = ob.time_observation_generator(observations, n_visits=15)
        np.set_printoptions(suppress=True)
        visit2visit.visit2visit(generator,
                                n_labels=observations.n_labels,
                                n_features=observations.n_features,
                                n_timesteps=15,
                                transform=None)
예제 #3
0
    def test_time_series(self):
        import random

        timeseries = rnnmed.data.io.read_time_series(
            open("test_data/synthetic_control.txt"))

        random.shuffle(timeseries)
        print(timeseries[0])
        generator = ts.timeseries_generator(timeseries)

        #  x, y = rnnmed.data.generate_time_batch(generator, batch_size=5)
        np.set_printoptions(suppress=True)
        visit2visit.visit2visit(generator,
                                n_features=timeseries.n_dimensions,
                                n_timesteps=timeseries.n_timesteps,
                                n_labels=timeseries.n_labels,
                                n_hidden=128,
                                max_iter=10000)