예제 #1
0
    def test_cmaes(self):
        maximizer = CMAES(objective_function, self.lower, self.upper)
        x = maximizer.maximize()

        assert x.shape[0] == 2
        assert len(x.shape) == 1
        assert np.all(x >= self.lower)
        assert np.all(x <= self.upper)
예제 #2
0
    def test_cmaes(self):
        maximizer = CMAES(self.objective_function, self.lower, self.upper)
        x = maximizer.maximize()

        assert x.shape[0] == 2
        assert len(x.shape) == 1
        assert np.all(x >= self.lower)
        assert np.all(x <= self.upper)
예제 #3
0
    def test_cmaes(self):
        maximizer = CMAES(self.acquisition_func, self.branin.X_lower, self.branin.X_upper)
        x = maximizer.maximize(verbose=False)

        assert x.shape[0] == 1
        assert x.shape[1] == self.branin.n_dims
        assert np.all(x[:, 0] >= self.branin.X_lower[0])
        assert np.all(x[:, 1] >= self.branin.X_lower[1])
        assert np.all(x[:, 0] <= self.branin.X_upper[0])
        assert np.all(x[:, 1] <= self.branin.X_upper[1])
        assert np.all(x < self.branin.X_upper)
예제 #4
0
    def test_cmaes(self):
        maximizer = CMAES(self.acquisition_func, self.branin.X_lower,
                          self.branin.X_upper)

        x = maximizer.maximize()

        assert x.shape[0] == 1
        assert x.shape[1] == self.branin.n_dims
        assert np.all(x[:, 0] >= self.branin.X_lower[0])
        assert np.all(x[:, 1] >= self.branin.X_lower[1])
        assert np.all(x[:, 0] <= self.branin.X_upper[0])
        assert np.all(x[:, 1] <= self.branin.X_upper[1])
        assert np.all(x < self.branin.X_upper)
예제 #5
0
def bohamiann(objective_function,
              lower,
              upper,
              num_iterations=30,
              maximizer="random",
              acquisition_func="log_ei",
              n_init=3,
              output_path=None,
              rng=None):
    """
    Bohamiann uses Bayesian neural networks to model the objective function [1] inside Bayesian optimization.
    Bayesian neural networks usually scale better with the number of function evaluations and the number of dimensions
    than Gaussian processes.

    [1] Bayesian optimization with robust Bayesian neural networks
        J. T. Springenberg and A. Klein and S. Falkner and F. Hutter
        Advances in Neural Information Processing Systems 29

    Parameters
    ----------
    objective_function: function
        The objective function that is minimized. This function gets a numpy array (D,) as input and returns
        the function value (scalar)
    lower: np.ndarray (D,)
        The lower bound of the search space
    upper: np.ndarray (D,)
        The upper bound of the search space
    num_iterations: int
        The number of iterations (initial design + BO)
    acquisition_func: {"ei", "log_ei", "lcb", "pi"}
        The acquisition function
    maximizer: {"direct", "cmaes", "random", "scipy"}
        The optimizer for the acquisition function. NOTE: "cmaes" only works in D > 1 dimensions
    n_init: int
        Number of points for the initial design. Make sure that it is <= num_iterations.
    output_path: string
        Specifies the path where the intermediate output after each iteration will be saved.
        If None no output will be saved to disk.
    rng: numpy.random.RandomState
        Random number generator

    Returns
    -------
        dict with all results
    """
    assert upper.shape[0] == lower.shape[0]
    assert n_init <= num_iterations, "Number of initial design point has to be <= than the number of iterations"

    if rng is None:
        rng = np.random.RandomState(np.random.randint(0, 10000))

    model = BayesianNeuralNetwork(sampling_method="sghmc",
                                  l_rate=np.sqrt(1e-4),
                                  mdecay=0.05,
                                  burn_in=3000,
                                  n_iters=50000,
                                  precondition=True,
                                  normalize_input=True,
                                  normalize_output=True)

    if acquisition_func == "ei":
        a = EI(model)
    elif acquisition_func == "log_ei":
        a = LogEI(model)
    elif acquisition_func == "pi":
        a = PI(model)
    elif acquisition_func == "lcb":
        a = LCB(model)

    else:
        print("ERROR: %s is not a valid acquisition function!" %
              acquisition_func)
        return

    if maximizer == "cmaes":
        max_func = CMAES(a, lower, upper, verbose=True, rng=rng)
    elif maximizer == "direct":
        max_func = Direct(a, lower, upper, verbose=True)
    elif maximizer == "random":
        max_func = RandomSampling(a, lower, upper, rng=rng)
    elif maximizer == "scipy":
        max_func = SciPyOptimizer(a, lower, upper, rng=rng)

    bo = BayesianOptimization(objective_function,
                              lower,
                              upper,
                              a,
                              model,
                              max_func,
                              initial_points=n_init,
                              output_path=output_path,
                              rng=rng)

    x_best, f_min = bo.run(num_iterations)

    results = dict()
    results["x_opt"] = x_best
    results["f_opt"] = f_min
    results["incumbents"] = [inc for inc in bo.incumbents]
    results["incumbent_values"] = [val for val in bo.incumbents_values]
    results["runtime"] = bo.runtime
    results["overhead"] = bo.time_overhead
    results["X"] = [x.tolist() for x in bo.X]
    results["y"] = [y for y in bo.y]
    return results
def bayesian_optimization(objective_function,
                          lower,
                          upper,
                          num_iterations=30,
                          maximizer="random",
                          acquisition_func="log_ei",
                          model_type="gp_mcmc",
                          n_init=3,
                          rng=None,
                          output_path=None):
    """
    General interface for Bayesian optimization for global black box
    optimization problems.

    Parameters
    ----------
    objective_function: function
        The objective function that is minimized. This function gets a numpy
        array (D,) as input and returns the function value (scalar)
    lower: np.ndarray (D,)
        The lower bound of the search space
    upper: np.ndarray (D,)
        The upper bound of the search space
    num_iterations: int
        The number of iterations (initial design + BO)
    maximizer: {"direct", "cmaes", "random", "scipy"}
        The optimizer for the acquisition function. NOTE: "cmaes" only works in D > 1 dimensions
    acquisition_func: {"ei", "log_ei", "lcb", "pi"}
        The acquisition function
    model_type: {"gp", "gp_mcmc", "rf"}
        The model for the objective function.
    n_init: int
        Number of points for the initial design. Make sure that it
        is <= num_iterations.
    output_path: string
        Specifies the path where the intermediate output after each iteration will be saved.
        If None no output will be saved to disk.
    rng: numpy.random.RandomState
        Random number generator

    Returns
    -------
        dict with all results
    """
    assert upper.shape[0] == lower.shape[0], "Dimension miss match"
    assert np.all(lower < upper), "Lower bound >= upper bound"
    assert n_init <= num_iterations, "Number of initial design point has to be <= than the number of iterations"

    if rng is None:
        rng = np.random.RandomState(np.random.randint(0, 10000))

    cov_amp = 2
    n_dims = lower.shape[0]

    initial_ls = np.ones([n_dims])
    exp_kernel = george.kernels.Matern52Kernel(initial_ls, ndim=n_dims)
    kernel = cov_amp * exp_kernel

    prior = DefaultPrior(len(kernel) + 1)

    n_hypers = 3 * len(kernel)
    if n_hypers % 2 == 1:
        n_hypers += 1

    if model_type == "gp":
        model = GaussianProcess(kernel,
                                prior=prior,
                                rng=rng,
                                normalize_output=False,
                                normalize_input=True,
                                lower=lower,
                                upper=upper)
    elif model_type == "gp_mcmc":
        model = GaussianProcessMCMC(kernel,
                                    prior=prior,
                                    n_hypers=n_hypers,
                                    chain_length=200,
                                    burnin_steps=100,
                                    normalize_input=True,
                                    normalize_output=True,
                                    rng=rng,
                                    lower=lower,
                                    upper=upper)

    elif model_type == "rf":
        model = RandomForest(rng=rng)

    else:
        raise ValueError("'{}' is not a valid model".format(model_type))

    if acquisition_func == "ei":
        a = EI(model)
    elif acquisition_func == "log_ei":
        a = LogEI(model)
    elif acquisition_func == "pi":
        a = PI(model)
    elif acquisition_func == "lcb":
        a = LCB(model)
    else:
        raise ValueError("'{}' is not a valid acquisition function".format(
            acquisition_func))

    if model_type == "gp_mcmc":
        acquisition_func = MarginalizationGPMCMC(a)
    else:
        acquisition_func = a

    if maximizer == "cmaes":
        max_func = CMAES(acquisition_func,
                         lower,
                         upper,
                         verbose=False,
                         rng=rng)
    elif maximizer == "direct":
        max_func = Direct(acquisition_func, lower, upper, verbose=True)
    elif maximizer == "random":
        max_func = RandomSampling(acquisition_func, lower, upper, rng=rng)
    elif maximizer == "scipy":
        max_func = SciPyOptimizer(acquisition_func, lower, upper, rng=rng)

    else:
        raise ValueError("'{}' is not a valid function to maximize the "
                         "acquisition function".format(maximizer))

    bo = BayesianOptimization(objective_function,
                              lower,
                              upper,
                              acquisition_func,
                              model,
                              max_func,
                              initial_points=n_init,
                              rng=rng,
                              output_path=output_path)

    x_best, f_min = bo.run(num_iterations)

    results = dict()
    results["x_opt"] = x_best
    results["f_opt"] = f_min
    results["incumbents"] = [inc for inc in bo.incumbents]
    results["incumbent_values"] = [val for val in bo.incumbents_values]
    results["runtime"] = bo.runtime
    results["overhead"] = bo.time_overhead
    results["X"] = [x.tolist() for x in bo.X]
    results["y"] = [y for y in bo.y]
    return results
예제 #7
0
def entropy_search(objective_function,
                   lower,
                   upper,
                   num_iterations=30,
                   maximizer="direct",
                   model="gp_mcmc",
                   n_init=3,
                   output_path=None,
                   rng=None):
    """
    Entropy search for global black box optimization problems. This is a reimplemenation of the entropy search
    algorithm by Henning and Schuler[1].

    [1] Entropy search for information-efficient global optimization.
        P. Hennig and C. Schuler.
        JMLR, (1), 2012.

    Parameters
    ----------
    objective_function: function
        The objective function that is minimized. This function gets a numpy array (D,) as input and returns
        the function value (scalar)
    lower: np.ndarray (D,)
        The lower bound of the search space
    upper: np.ndarray (D,)
        The upper bound of the search space
    num_iterations: int
        The number of iterations (initial design + BO)
    maximizer: {"direct", "cmaes"}
        Defines how the acquisition function is maximized. NOTE: "cmaes" only works in D > 1 dimensions
    model: {"gp", "gp_mcmc"}
        The model for the objective function.
    n_init: int
        Number of points for the initial design. Make sure that it is <= num_iterations.
    output_path: string
        Specifies the path where the intermediate output after each iteration will be saved.
        If None no output will be saved to disk.
    rng: numpy.random.RandomState
        Random number generator

    Returns
    -------
        dict with all results
    """
    assert upper.shape[0] == lower.shape[0], "Dimension miss match"
    assert np.all(lower < upper), "Lower bound >= upper bound"
    assert n_init <= num_iterations, "Number of initial design point has to be <= than the number of iterations"

    if rng is None:
        rng = np.random.RandomState(np.random.randint(0, 10000))

    cov_amp = 2
    n_dims = lower.shape[0]

    initial_ls = np.ones([n_dims])
    exp_kernel = george.kernels.Matern52Kernel(initial_ls, ndim=n_dims)
    kernel = cov_amp * exp_kernel

    prior = DefaultPrior(len(kernel) + 1)

    n_hypers = 3 * len(kernel)
    if n_hypers % 2 == 1:
        n_hypers += 1

    if model == "gp":
        gp = GaussianProcess(kernel,
                             prior=prior,
                             rng=rng,
                             normalize_output=False,
                             normalize_input=True,
                             lower=lower,
                             upper=upper)
    elif model == "gp_mcmc":
        gp = GaussianProcessMCMC(kernel,
                                 prior=prior,
                                 n_hypers=n_hypers,
                                 chain_length=200,
                                 burnin_steps=100,
                                 normalize_input=True,
                                 normalize_output=False,
                                 rng=rng,
                                 lower=lower,
                                 upper=upper)
    else:
        print("ERROR: %s is not a valid model!" % model)
        return

    a = InformationGain(gp, lower=lower, upper=upper, sampling_acquisition=EI)

    if model == "gp":
        acquisition_func = a
    elif model == "gp_mcmc":
        acquisition_func = MarginalizationGPMCMC(a)

    if maximizer == "cmaes":
        max_func = CMAES(acquisition_func,
                         lower,
                         upper,
                         verbose=False,
                         rng=rng)
    elif maximizer == "direct":
        max_func = Direct(acquisition_func, lower, upper)
    else:
        print(
            "ERROR: %s is not a valid function to maximize the acquisition function!"
            % maximizer)
        return

    bo = BayesianOptimization(objective_function,
                              lower,
                              upper,
                              acquisition_func,
                              gp,
                              max_func,
                              initial_points=n_init,
                              rng=rng,
                              output_path=output_path)

    x_best, f_min = bo.run(num_iterations)

    results = dict()
    results["x_opt"] = x_best
    results["f_opt"] = f_min
    results["incumbents"] = [inc for inc in bo.incumbents]
    results["incumbent_values"] = [val for val in bo.incumbents_values]
    results["runtime"] = bo.runtime
    results["overhead"] = bo.time_overhead
    results["X"] = [x.tolist() for x in bo.X]
    results["y"] = [y for y in bo.y]
    return results
예제 #8
0
파일: example_rf.py 프로젝트: Krxsy/RoBO
# the bounds of the input space
branin = Branin()

# Instantiate the random forest. Branin does not have any categorical
# values thus we pass a np.zero vector here.
model = RandomForest(branin.types)

# Define the acquisition function
acquisition_func = EI(model,
                      X_upper=branin.X_upper,
                      X_lower=branin.X_lower,
                      par=0.1)

# Strategy of estimating the incumbent
rec = PosteriorMeanAndStdOptimization(model,
                                      branin.X_lower,
                                      branin.X_upper,
                                      with_gradients=False)

# Define the maximizer
maximizer = CMAES(acquisition_func, branin.X_lower, branin.X_upper)

# Now we defined everything we need to instantiate the solver
bo = BayesianOptimization(acquisition_func=acquisition_func,
                          model=model,
                          maximize_func=maximizer,
                          task=branin,
                          incumbent_estimation=rec)

bo.run(100)
예제 #9
0
def bayesian_optimization(objective_function,
                          lower,
                          upper,
                          num_iterations=30,
                          maximizer="direct",
                          acquisition_func="log_ei",
                          model="gp_mcmc",
                          n_init=3,
                          rng=None):
    """
    General interface for Bayesian optimization for global black box optimization problems.

    Parameters
    ----------
    objective_function: function
        The objective function that is minimized. This function gets a numpy array (D,) as input and returns
        the function value (scalar)
    lower: np.ndarray (D,)
        The lower bound of the search space
    upper: np.ndarray (D,)
        The upper bound of the search space
    num_iterations: int
        The number of iterations (initial design + BO)
    maximizer: {"direct", "cmaes"}
        Defines how the acquisition function is maximized. NOTE: "cmaes" only works in D > 1 dimensions
    acquisition_func: {"ei", "log_ei", "lcb", "pi"}
        The acquisition function
    model: {"gp", "gp_mcmc"}
        The model for the objective function.
    n_init: int
        Number of points for the initial design. Make sure that it is <= num_iterations.
    rng: numpy.random.RandomState
        Random number generator

    Returns
    -------
        dict with all results
    """
    assert upper.shape[0] == lower.shape[0]
    assert n_init <= num_iterations, "Number of initial design point has to be <= than the number of iterations"

    if rng is None:
        rng = np.random.RandomState(np.random.randint(0, 10000))

    cov_amp = 2
    n_dims = lower.shape[0]

    initial_ls = np.ones([n_dims])
    exp_kernel = george.kernels.Matern52Kernel(initial_ls, ndim=n_dims)
    kernel = cov_amp * exp_kernel

    prior = DefaultPrior(len(kernel) + 1)

    n_hypers = 3 * len(kernel)
    if n_hypers % 2 == 1:
        n_hypers += 1

    if model == "gp":
        gp = GaussianProcess(kernel,
                             prior=prior,
                             rng=rng,
                             normalize_output=True,
                             normalize_input=True,
                             lower=lower,
                             upper=upper)
    elif model == "gp_mcmc":
        gp = GaussianProcessMCMC(kernel,
                                 prior=prior,
                                 n_hypers=n_hypers,
                                 chain_length=200,
                                 burnin_steps=100,
                                 normalize_input=True,
                                 normalize_output=True,
                                 rng=rng,
                                 lower=lower,
                                 upper=upper)
    else:
        print("ERROR: %s is not a valid model!" % model)
        return

    if acquisition_func == "ei":
        a = EI(gp)
    elif acquisition_func == "log_ei":
        a = LogEI(gp)
    elif acquisition_func == "pi":
        a = PI(gp)
    elif acquisition_func == "lcb":
        a = LCB(gp)
    else:
        print("ERROR: %s is not a valid acquisition function!" %
              acquisition_func)
        return

    if model == "gp":
        acquisition_func = a
    elif model == "gp_mcmc":
        acquisition_func = MarginalizationGPMCMC(a)

    if maximizer == "cmaes":
        max_func = CMAES(acquisition_func,
                         lower,
                         upper,
                         verbose=False,
                         rng=rng)
    elif maximizer == "direct":
        max_func = Direct(acquisition_func, lower, upper, verbose=False)
    else:
        print(
            "ERROR: %s is not a valid function to maximize the acquisition function!"
            % maximizer)
        return

    bo = BayesianOptimization(objective_function,
                              lower,
                              upper,
                              acquisition_func,
                              gp,
                              max_func,
                              initial_points=n_init,
                              rng=rng)

    x_best, f_min = bo.run(num_iterations)

    results = dict()
    results["x_opt"] = x_best
    results["f_opt"] = f_min
    results["incumbents"] = [inc for inc in bo.incumbents]
    results["incumbent_values"] = [val for val in bo.incumbents_values]
    results["runtime"] = bo.runtime
    results["overhead"] = bo.time_overhead
    return results
from robo.task.rembo import REMBO
from robo.task.synthetic_functions.branin import Branin
from robo.models.gpy_model import GPyModel
from robo.maximizers.cmaes import CMAES
from robo.solver.bayesian_optimization import BayesianOptimization
from robo.acquisition.ei import EI


class BraninInBillionDims(REMBO):
    def __init__(self):
        self.b = Branin()
        X_lower = np.concatenate((self.b.X_lower, np.zeros([999998])))
        X_upper = np.concatenate((self.b.X_upper, np.ones([999998])))
        super(BraninInBillionDims, self).__init__(X_lower, X_upper, d=2)

    def objective_function(self, x):
        return self.b.objective_function(x[:, :2])

task = BraninInBillionDims()
kernel = GPy.kern.Matern52(input_dim=task.n_dims)
model = GPyModel(kernel, optimize=True, num_restarts=10)
acquisition_func = EI(model, task.X_lower, task.X_upper)
maximizer = CMAES(acquisition_func, task.X_lower, task.X_upper)
bo = BayesianOptimization(acquisition_func=acquisition_func,
                      model=model,
                      maximize_func=maximizer,
                      task=task)

bo.run(500)