def warmstart_mtbo(objective_function, lower, upper, observed_X, observed_y, n_tasks=2, num_iterations=30, model_type="gp_mcmc", target_task_id=1, burnin=100, chain_length=200, n_hypers=20, output_path=None, rng=None): """ Interface to MTBO[1] which uses an auxiliary cheaper task to warm start the optimization on new but similar task. Note here we only warmstart the optimization process, in case you want to speed up Bayesian optimization by evaluating on auxiliary task during the optimization check out mtbo() or fabolas(). [1] Multi-Task Bayesian Optimization K. Swersky and J. Snoek and R. Adams Proceedings of the 27th International Conference on Advances in Neural Information Processing Systems (NIPS'13) Parameters ---------- objective_function: function Objective function that will be optimized lower: np.array(D,) Lower bound of the input space upper: np.array(D,) Upper bound of the input space observed_X: np.array(N, D + 1) observed point from the auxiliary task. Make sure that the last dimension identifies the auxiliary task (default=0). We assume the main task to have the task id = 1 observed_y: np.array(N,) corresponding target values n_tasks: int Number of task target_task_id: int the id of the target task num_iterations: int Number of iterations chain_length : int The length of the MCMC chain for each walker. burnin : int The number of burnin steps before the actual MCMC sampling starts. output_path: string Specifies the path where the intermediate output after each iteration will be saved. If None no output will be saved to disk. rng: numpy.random.RandomState Random number generator Returns ------- dict with all results """ assert lower.shape[0] == upper.shape[ 0], "Dimension miss match between upper and lower bound" time_start = time.time() if rng is None: rng = np.random.RandomState(np.random.randint(0, 10000)) n_dims = lower.shape[0] # Bookkeeping time_func_eval = [] time_overhead = [] incumbents = [] incumbent_values = [] runtime = [] X = deepcopy(observed_X) y = deepcopy(observed_y) if model_type == "gp_mcmc": # Define model for the objective function cov_amp = 1 # Covariance amplitude kernel = cov_amp # ARD Kernel for the configuration space for d in range(n_dims): kernel *= george.kernels.Matern52Kernel(np.ones([1]) * 0.01, ndim=n_dims + 1, axes=d) task_kernel = george.kernels.TaskKernel(n_dims + 1, n_dims, n_tasks) kernel *= task_kernel # Take 3 times more samples than we have hyperparameters if n_hypers < 2 * len(kernel): n_hypers = 3 * len(kernel) if n_hypers % 2 == 1: n_hypers += 1 prior = MTBOPrior(len(kernel) + 1, n_ls=n_dims, n_kt=len(task_kernel), rng=rng) model_objective = MTBOGPMCMC(kernel, prior=prior, burnin_steps=burnin, chain_length=chain_length, n_hypers=n_hypers, lower=lower, upper=upper, rng=rng) elif model_type == "bohamiann": model_objective = WrapperBohamiannMultiTask(n_tasks=n_tasks) acquisition_func = LogEI(model_objective) # Optimize acquisition function only on the main task def wrapper(x): x_ = np.append(x, np.ones([x.shape[0], 1]) * target_task_id, axis=1) if y.shape[0] == init_points: eta = 0 else: eta = np.min(y[init_points:]) a = acquisition_func(x_, eta=eta) return a maximizer = DifferentialEvolution(wrapper, lower, upper) X = np.array(X) y = np.array(y) init_points = y.shape[0] for it in range(num_iterations): logger.info("Start iteration %d ... ", it) start_time = time.time() # Train models model_objective.train(X, y, do_optimize=True) # Maximize acquisition function acquisition_func.update(model_objective) new_x = maximizer.maximize() new_x = np.append(new_x, np.array([target_task_id])) time_overhead.append(time.time() - start_time) logger.info("Optimization overhead was %f seconds", time_overhead[-1]) # Evaluate the chosen configuration logger.info("Evaluate candidate %s", str(new_x)) start_time = time.time() new_y = objective_function(new_x[:-1], int(new_x[-1])) time_func_eval.append(time.time() - start_time) logger.info("Configuration achieved a performance of %f", new_y) logger.info("Evaluation of this configuration took %f seconds", time_func_eval[-1]) # Add new observation to the data X = np.concatenate((X, new_x[None, :]), axis=0) y = np.concatenate( (y, np.array([new_y])), axis=0) # Model the target function on a logarithmic scale # Estimate incumbent as the best observed value so far best_idx = np.argmin(y[init_points:]) + init_points incumbent = X[best_idx][:-1] incumbent_value = y[best_idx] incumbents.append(incumbent) incumbent_values.append(incumbent_value) logger.info("Current incumbent %s with estimated performance %f", str(incumbent), incumbent_value) runtime.append(time.time() - time_start) if output_path is not None: data = dict() data["optimization_overhead"] = time_overhead[it] data["runtime"] = runtime[it] data["incumbent"] = incumbents[it].tolist() data["time_func_eval"] = time_func_eval[it] data["iteration"] = it json.dump( data, open(os.path.join(output_path, "mtbo_iter_%d.json" % it), "w")) logger.info("Final incumbent %s with estimated performance %f", str(incumbent), incumbent_value) results = dict() results["x_opt"] = incumbent.tolist() results["incumbents"] = [inc.tolist() for inc in incumbents] results["runtime"] = runtime results["overhead"] = time_overhead results["time_func_eval"] = time_func_eval results["incumbent_values"] = incumbent_values results["X"] = X results["y"] = y return results
def mtbo(objective_function, lower, upper, n_tasks=2, n_init=2, num_iterations=30, burnin=100, chain_length=200, n_hypers=20, output_path=None, rng=None): """ Interface to MTBO[1] which uses an auxiliary cheaper task to speed up the optimization of a more expensive but similar task. [1] Multi-Task Bayesian Optimization K. Swersky and J. Snoek and R. Adams Proceedings of the 27th International Conference on Advances in Neural Information Processing Systems (NIPS'13) Parameters ---------- objective_function: function Objective function that will be optimized lower: np.array(D,) Lower bound of the input space upper: np.array(D,) Upper bound of the input space n_tasks: int Number of task n_init: int Number of initial design points num_iterations: int Number of iterations chain_length : int The length of the MCMC chain for each walker. burnin : int The number of burnin steps before the actual MCMC sampling starts. output_path: string Specifies the path where the intermediate output after each iteration will be saved. If None no output will be saved to disk. rng: numpy.random.RandomState Random number generator Returns ------- dict with all results """ assert n_init <= num_iterations, "Number of initial design point has to be <= than the number of iterations" assert lower.shape[0] == upper.shape[ 0], "Dimension miss match between upper and lower bound" time_start = time.time() if rng is None: rng = np.random.RandomState(np.random.randint(0, 10000)) n_dims = lower.shape[0] # Bookkeeping time_func_eval = [] time_overhead = [] incumbents = [] runtime = [] X = [] y = [] c = [] # Define model for the objective function cov_amp = 1 # Covariance amplitude kernel = cov_amp # ARD Kernel for the configuration space for d in range(n_dims): kernel *= george.kernels.Matern52Kernel(np.ones([1]) * 0.01, ndim=n_dims + 1, dim=d) task_kernel = george.kernels.TaskKernel(n_dims + 1, n_dims, n_tasks) kernel *= task_kernel # Take 3 times more samples than we have hyperparameters if n_hypers < 2 * len(kernel): n_hypers = 3 * len(kernel) if n_hypers % 2 == 1: n_hypers += 1 prior = MTBOPrior(len(kernel) + 1, n_ls=n_dims, n_kt=len(task_kernel), rng=rng) model_objective = MTBOGPMCMC(kernel, prior=prior, burnin_steps=burnin, chain_length=chain_length, n_hypers=n_hypers, lower=lower, upper=upper, rng=rng) # Define model for the cost function cost_cov_amp = 1 cost_kernel = cost_cov_amp # ARD Kernel for the configuration space for d in range(n_dims): cost_kernel *= george.kernels.Matern52Kernel(np.ones([1]) * 0.01, ndim=n_dims + 1, dim=d) cost_task_kernel = george.kernels.TaskKernel(n_dims + 1, n_dims, n_tasks) cost_kernel *= cost_task_kernel cost_prior = MTBOPrior(len(cost_kernel) + 1, n_ls=n_dims, n_kt=len(task_kernel), rng=rng) model_cost = MTBOGPMCMC(cost_kernel, prior=cost_prior, burnin_steps=burnin, chain_length=chain_length, n_hypers=n_hypers, lower=lower, upper=upper, rng=rng) # Extend input space by task variable extend_lower = np.append(lower, 0) extend_upper = np.append(upper, n_tasks - 1) is_env = np.zeros(extend_lower.shape[0]) is_env[-1] = 1 # Define acquisition function and maximizer ig = InformationGainPerUnitCost(model_objective, model_cost, extend_lower, extend_upper, sampling_acquisition=EI, is_env_variable=is_env, n_representer=50) acquisition_func = MarginalizationGPMCMC(ig) maximizer = Direct(acquisition_func, extend_lower, extend_upper, n_func_evals=200) # Initial Design logger.info("Initial Design") for it in range(n_init): start_time_overhead = time.time() # Draw random configuration and evaluate it just on the auxiliary task task = 0 x = init_random_uniform(lower, upper, 1, rng)[0] logger.info("Evaluate candidate %s", str(x)) st = time.time() func_val, cost = objective_function(x, task) time_func_eval.append(time.time() - st) logger.info("Configuration achieved a performance of %f with cost %f", func_val, cost) logger.info("Evaluation of this configuration took %f seconds", time_func_eval[-1]) # Bookkeeping config = np.append(x, task) X.append(config) y.append(np.log( func_val)) # Model the target function on a logarithmic scale c.append(np.log(cost)) # Model the cost on a logarithmic scale # Estimate incumbent as the best observed value so far best_idx = np.argmin(y) incumbents.append(X[best_idx][:-1]) time_overhead.append(time.time() - start_time_overhead) runtime.append(time.time() - time_start) if output_path is not None: data = dict() data["optimization_overhead"] = time_overhead[it] data["runtime"] = runtime[it] data["incumbent"] = incumbents[it].tolist() data["time_func_eval"] = time_func_eval[it] data["iteration"] = it json.dump( data, open(os.path.join(output_path, "mtbo_iter_%d.json" % it), "w")) X = np.array(X) y = np.array(y) c = np.array(c) for it in range(n_init, num_iterations): logger.info("Start iteration %d ... ", it) start_time = time.time() # Train models model_objective.train(X, y, do_optimize=True) model_cost.train(X, c, do_optimize=True) # Estimate incumbent as the best observed value so far best_idx = np.argmin(y) incumbent = X[best_idx][:-1] incumbent = np.append(incumbent, 1) incumbent_value = y[best_idx] incumbents.append(incumbent[:-1]) logger.info("Current incumbent %s with estimated performance %f", str(incumbent), incumbent_value) # Maximize acquisition function acquisition_func.update(model_objective, model_cost) new_x = maximizer.maximize() new_x[-1] = np.rint( new_x[-1]) # Map float value to discrete task variable time_overhead.append(time.time() - start_time) logger.info("Optimization overhead was %f seconds", time_overhead[-1]) # Evaluate the chosen configuration logger.info("Evaluate candidate %s", str(new_x)) start_time = time.time() new_y, new_c = objective_function(new_x[:-1], new_x[-1]) time_func_eval.append(time.time() - start_time) logger.info("Configuration achieved a performance of %f with cost %f", new_y, new_c) logger.info("Evaluation of this configuration took %f seconds", time_func_eval[-1]) # Add new observation to the data X = np.concatenate((X, new_x[None, :]), axis=0) y = np.concatenate( (y, np.log(np.array([new_y]))), axis=0) # Model the target function on a logarithmic scale c = np.concatenate( (c, np.log(np.array([new_c]))), axis=0) # Model the cost function on a logarithmic scale runtime.append(time.time() - time_start) if output_path is not None: data = dict() data["optimization_overhead"] = time_overhead[it] data["runtime"] = runtime[it] data["incumbent"] = incumbents[it].tolist() data["time_func_eval"] = time_func_eval[it] data["iteration"] = it json.dump( data, open(os.path.join(output_path, "mtbo_iter_%d.json" % it), "w")) # Estimate the final incumbent model_objective.train(X, y) incumbent, incumbent_value = projected_incumbent_estimation( model_objective, X[:, :-1], proj_value=n_tasks - 1) logger.info("Final incumbent %s with estimated performance %f", str(incumbent), incumbent_value) results = dict() results["x_opt"] = incumbent[:-1].tolist() results["incumbents"] = [inc.tolist() for inc in incumbents] results["runtime"] = runtime results["overhead"] = time_overhead results["time_func_eval"] = time_func_eval results["X"] = X results["y"] = y results["c"] = c return results