logger = SummaryWriter(log_dir=log_path) model = ModelMixStyleWithV().to(device) optimizer = torch.optim.Adam(model.parameters(), lr=3e-4, weight_decay=opt.weight_decay) param = parse_yaml_file_unsafe('./param_oxford.yaml') train_loader = DataLoader(DIVADataset(param, mode='train', opt=opt), batch_size=opt.batch_size, shuffle=False, num_workers=opt.n_cpu) train_samples = iter(train_loader) param = parse_yaml_file_unsafe('./param_kitti.yaml') eval_trajectory_dataset = KittiDataset(param, 'eval', opt) #2 dataloader_eval = DataLoader(eval_trajectory_dataset, batch_size=1, shuffle=False, num_workers=1) eval_samples = iter(dataloader_eval) criterion = nn.MSELoss().to(device) criterion_l1 = nn.SmoothL1Loss().to(device) trajectory_criterion = torch.nn.MSELoss().to(device) def show_traj_with_uncertainty(fake_traj, real_traj, step, model_index,
torch.load( 'result/saved_models/train-gan-costmap-vector16-01/generator_6000.pth') ) trajectory_criterion = torch.nn.MSELoss().to(device) e_optimizer = torch.optim.Adam(encoder.parameters(), lr=opt.lr, weight_decay=opt.weight_decay) # param = parse_yaml_file_unsafe('./param_oxford.yaml') # train_loader = DataLoader(OursDataset(param, mode='train', opt=opt), batch_size=opt.batch_size, shuffle=False, num_workers=opt.n_cpu) # train_samples = iter(train_loader) param = parse_yaml_file_unsafe('./param_kitti.yaml') eval_loader = DataLoader(KittiDataset(param, mode='eval', opt=opt), batch_size=1, shuffle=False, num_workers=1) eval_samples = iter(eval_loader) def show_traj(fake_traj, real_traj, t, step): fake_xy = fake_traj x = fake_xy[:, 0] * opt.max_dist y = fake_xy[:, 1] * opt.max_dist real_xy = real_traj real_x = real_xy[:, 0] * opt.max_dist real_y = real_xy[:, 1] * opt.max_dist max_x = 30.
trajectory_criterion = torch.nn.MSELoss().to(device) latent_criterion = torch.nn.MSELoss().to(device) e_optimizer = torch.optim.Adam(encoder.parameters(), lr=opt.lr, weight_decay=opt.weight_decay) discriminator = Discriminator(input_dim=opt.vector_dim*2, output=1).to(device) discriminator_criterion = nn.BCEWithLogitsLoss().to(device) d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=3e-4, weight_decay=opt.weight_decay) param = parse_yaml_file_unsafe('./param_oxford.yaml') train_loader = DataLoader(DIVADataset(param, mode='train', opt=opt), batch_size=opt.batch_size, shuffle=False, num_workers=opt.n_cpu) train_samples = iter(train_loader) param = parse_yaml_file_unsafe('./param_kitti.yaml') eval_loader = DataLoader(KittiDataset(param, mode='eval', opt=opt), batch_size=1, shuffle=False, num_workers=1) eval_samples = iter(eval_loader) def show_traj(fake_traj, real_traj, t, step, img=None): fake_xy = fake_traj x = fake_xy[:,0]#*opt.max_dist y = fake_xy[:,1]#*opt.max_dist real_xy = real_traj real_x = real_xy[:,0]#*opt.max_dist real_y = real_xy[:,1]#*opt.max_dist max_x = 30. max_y = 30. fig = plt.figure(figsize=(7, 7))