def _load_model(self): """ Loads an xml model, puts it in self.model """ super()._load_model() # Adjust base pose(s) accordingly if self.env_configuration == "bimanual": xpos = self.robots[0].robot_model.base_xpos_offset["table"](self.table_full_size[0]) self.robots[0].robot_model.set_base_xpos(xpos) else: if self.env_configuration == "single-arm-opposed": # Set up robots facing towards each other by rotating them from their default position for robot, rotation in zip(self.robots, (np.pi/2, -np.pi/2)): xpos = robot.robot_model.base_xpos_offset["table"](self.table_full_size[0]) rot = np.array((0, 0, rotation)) xpos = T.euler2mat(rot) @ np.array(xpos) robot.robot_model.set_base_xpos(xpos) robot.robot_model.set_base_ori(rot) else: # "single-arm-parallel" configuration setting # Set up robots parallel to each other but offset from the center for robot, offset in zip(self.robots, (-0.25, 0.25)): xpos = robot.robot_model.base_xpos_offset["table"](self.table_full_size[0]) xpos = np.array(xpos) + np.array((0, offset, 0)) robot.robot_model.set_base_xpos(xpos) # load model for table top workspace mujoco_arena = TableArena( table_full_size=self.table_full_size, table_friction=self.table_friction, table_offset=self.table_offset, ) # Arena always gets set to zero origin mujoco_arena.set_origin([0, 0, 0]) # initialize objects of interest self.pot = PotWithHandlesObject(name="pot") # Create placement initializer if self.placement_initializer is not None: self.placement_initializer.reset() self.placement_initializer.add_objects(self.pot) else: self.placement_initializer = UniformRandomSampler( name="ObjectSampler", mujoco_objects=self.pot, x_range=[-0.03, 0.03], y_range=[-0.03, 0.03], ensure_object_boundary_in_range=False, ensure_valid_placement=True, reference_pos=self.table_offset, rotation=(np.pi + -np.pi / 3, np.pi + np.pi / 3), ) # task includes arena, robot, and objects of interest self.model = ManipulationTask( mujoco_arena=mujoco_arena, mujoco_robots=[robot.robot_model for robot in self.robots], mujoco_objects=self.pot, )
class TwoArmHandover(TwoArmEnv): """ This class corresponds to the handover task for two robot arms. Args: robots (str or list of str): Specification for specific robot arm(s) to be instantiated within this env (e.g: "Sawyer" would generate one arm; ["Panda", "Panda", "Sawyer"] would generate three robot arms) Note: Must be either 2 single single-arm robots or 1 bimanual robot! env_configuration (str): Specifies how to position the robots within the environment. Can be either: :`'bimanual'`: Only applicable for bimanual robot setups. Sets up the (single) bimanual robot on the -x side of the table :`'single-arm-parallel'`: Only applicable for multi single arm setups. Sets up the (two) single armed robots next to each other on the -x side of the table :`'single-arm-opposed'`: Only applicable for multi single arm setups. Sets up the (two) single armed robots opposed from each others on the opposite +/-y sides of the table. Note that "default" corresponds to either "bimanual" if a bimanual robot is used or "single-arm-opposed" if two single-arm robots are used. controller_configs (str or list of dict): If set, contains relevant controller parameters for creating a custom controller. Else, uses the default controller for this specific task. Should either be single dict if same controller is to be used for all robots or else it should be a list of the same length as "robots" param gripper_types (str or list of str): type of gripper, used to instantiate gripper models from gripper factory. Default is "default", which is the default grippers(s) associated with the robot(s) the 'robots' specification. None removes the gripper, and any other (valid) model overrides the default gripper. Should either be single str if same gripper type is to be used for all robots or else it should be a list of the same length as "robots" param initialization_noise (dict or list of dict): Dict containing the initialization noise parameters. The expected keys and corresponding value types are specified below: :`'magnitude'`: The scale factor of uni-variate random noise applied to each of a robot's given initial joint positions. Setting this value to `None` or 0.0 results in no noise being applied. If "gaussian" type of noise is applied then this magnitude scales the standard deviation applied, If "uniform" type of noise is applied then this magnitude sets the bounds of the sampling range :`'type'`: Type of noise to apply. Can either specify "gaussian" or "uniform" Should either be single dict if same noise value is to be used for all robots or else it should be a list of the same length as "robots" param :Note: Specifying "default" will automatically use the default noise settings. Specifying None will automatically create the required dict with "magnitude" set to 0.0. prehensile (bool): If true, handover object starts on the table. Else, the object starts in Arm0's gripper table_full_size (3-tuple): x, y, and z dimensions of the table. table_friction (3-tuple): the three mujoco friction parameters for the table. use_camera_obs (bool): if True, every observation includes rendered image(s) use_object_obs (bool): if True, include object (cube) information in the observation. reward_scale (None or float): Scales the normalized reward function by the amount specified. If None, environment reward remains unnormalized reward_shaping (bool): if True, use dense rewards. placement_initializer (ObjectPositionSampler): if provided, will be used to place objects on every reset, else a UniformRandomSampler is used by default. has_renderer (bool): If true, render the simulation state in a viewer instead of headless mode. has_offscreen_renderer (bool): True if using off-screen rendering render_camera (str): Name of camera to render if `has_renderer` is True. Setting this value to 'None' will result in the default angle being applied, which is useful as it can be dragged / panned by the user using the mouse render_collision_mesh (bool): True if rendering collision meshes in camera. False otherwise. render_visual_mesh (bool): True if rendering visual meshes in camera. False otherwise. render_gpu_device_id (int): corresponds to the GPU device id to use for offscreen rendering. Defaults to -1, in which case the device will be inferred from environment variables (GPUS or CUDA_VISIBLE_DEVICES). control_freq (float): how many control signals to receive in every second. This sets the amount of simulation time that passes between every action input. horizon (int): Every episode lasts for exactly @horizon timesteps. ignore_done (bool): True if never terminating the environment (ignore @horizon). hard_reset (bool): If True, re-loads model, sim, and render object upon a reset call, else, only calls sim.reset and resets all robosuite-internal variables camera_names (str or list of str): name of camera to be rendered. Should either be single str if same name is to be used for all cameras' rendering or else it should be a list of cameras to render. :Note: At least one camera must be specified if @use_camera_obs is True. :Note: To render all robots' cameras of a certain type (e.g.: "robotview" or "eye_in_hand"), use the convention "all-{name}" (e.g.: "all-robotview") to automatically render all camera images from each robot's camera list). camera_heights (int or list of int): height of camera frame. Should either be single int if same height is to be used for all cameras' frames or else it should be a list of the same length as "camera names" param. camera_widths (int or list of int): width of camera frame. Should either be single int if same width is to be used for all cameras' frames or else it should be a list of the same length as "camera names" param. camera_depths (bool or list of bool): True if rendering RGB-D, and RGB otherwise. Should either be single bool if same depth setting is to be used for all cameras or else it should be a list of the same length as "camera names" param. camera_segmentations (None or str or list of str or list of list of str): Camera segmentation(s) to use for each camera. Valid options are: `None`: no segmentation sensor used `'instance'`: segmentation at the class-instance level `'class'`: segmentation at the class level `'element'`: segmentation at the per-geom level If not None, multiple types of segmentations can be specified. A [list of str / str or None] specifies [multiple / a single] segmentation(s) to use for all cameras. A list of list of str specifies per-camera segmentation setting(s) to use. Raises: ValueError: [Invalid number of robots specified] ValueError: [Invalid env configuration] ValueError: [Invalid robots for specified env configuration] """ def __init__( self, robots, env_configuration="default", controller_configs=None, gripper_types="default", initialization_noise="default", prehensile=True, table_full_size=(0.8, 1.2, 0.05), table_friction=(1.0, 5e-3, 1e-4), use_camera_obs=True, use_object_obs=True, reward_scale=1.0, reward_shaping=False, placement_initializer=None, has_renderer=False, has_offscreen_renderer=True, render_camera="frontview", render_collision_mesh=False, render_visual_mesh=True, render_gpu_device_id=-1, control_freq=20, horizon=1000, ignore_done=False, hard_reset=True, camera_names="agentview", camera_heights=256, camera_widths=256, camera_depths=False, camera_segmentations=None, # {None, instance, class, element} renderer="mujoco", renderer_config=None, ): # Task settings self.prehensile = prehensile # settings for table top self.table_full_size = table_full_size self.table_true_size = list(table_full_size) self.table_true_size[ 1] *= 0.25 # true size will only be partially wide self.table_friction = table_friction self.table_offset = [0, self.table_full_size[1] * (-3 / 8), 0.8] # reward configuration self.reward_scale = reward_scale self.reward_shaping = reward_shaping self.height_threshold = 0.1 # threshold above the table surface which the hammer is considered lifted # whether to use ground-truth object states self.use_object_obs = use_object_obs # object placement initializer self.placement_initializer = placement_initializer super().__init__( robots=robots, env_configuration=env_configuration, controller_configs=controller_configs, mount_types="default", gripper_types=gripper_types, initialization_noise=initialization_noise, use_camera_obs=use_camera_obs, has_renderer=has_renderer, has_offscreen_renderer=has_offscreen_renderer, render_camera=render_camera, render_collision_mesh=render_collision_mesh, render_visual_mesh=render_visual_mesh, render_gpu_device_id=render_gpu_device_id, control_freq=control_freq, horizon=horizon, ignore_done=ignore_done, hard_reset=hard_reset, camera_names=camera_names, camera_heights=camera_heights, camera_widths=camera_widths, camera_depths=camera_depths, camera_segmentations=camera_segmentations, renderer=renderer, renderer_config=renderer_config, ) def reward(self, action=None): """ Reward function for the task. Sparse un-normalized reward: - a discrete reward of 2.0 is provided when only Arm 1 is gripping the handle and has the handle lifted above a certain threshold Un-normalized max-wise components if using reward shaping: - Arm0 Reaching: (1) in [0, 0.25] proportional to the distance between Arm 0 and the handle - Arm0 Grasping: (2) in {0, 0.5}, nonzero if Arm 0 is gripping the hammer (any part). - Arm0 Lifting: (3) in {0, 1.0}, nonzero if Arm 0 lifts the handle from the table past a certain threshold - Arm0 Hovering: (4) in {0, [1.0, 1.25]}, nonzero only if Arm0 is actively lifting the hammer, and is proportional to the distance between the handle and Arm 1 conditioned on the handle being lifted from the table and being grasped by Arm 0 - Mutual Grasping: (5) in {0, 1.5}, nonzero if both Arm 0 and Arm 1 are gripping the hammer (Arm 1 must be gripping the handle) while lifted above the table - Handover: (6) in {0, 2.0}, nonzero when only Arm 1 is gripping the handle and has the handle lifted above the table Note that the final reward is normalized and scaled by reward_scale / 2.0 as well so that the max score is equal to reward_scale Args: action (np array): [NOT USED] Returns: float: reward value """ # Initialize reward reward = 0 # use a shaping reward if specified if self.reward_shaping: # Grab relevant parameters arm0_grasp_any, arm1_grasp_handle, hammer_height, table_height = self._get_task_info( ) # First, we'll consider the cases if the hammer is lifted above the threshold (step 3 - 6) if hammer_height - table_height > self.height_threshold: # Split cases depending on whether arm1 is currently grasping the handle or not if arm1_grasp_handle: # Check if arm0 is grasping if arm0_grasp_any: # This is step 5 reward = 1.5 else: # This is step 6 (completed task!) reward = 2.0 # This is the case where only arm0 is grasping (step 2-3) else: reward = 1.0 # Add in up to 0.25 based on distance between handle and arm1 dist = np.linalg.norm(self._gripper_1_to_handle) reaching_reward = 0.25 * (1 - np.tanh(1.0 * dist)) reward += reaching_reward # Else, the hammer is still on the ground ): else: # Split cases depending on whether arm0 is currently grasping the handle or not if arm0_grasp_any: # This is step 2 reward = 0.5 else: # This is step 1, we want to encourage arm0 to reach for the handle dist = np.linalg.norm(self._gripper_0_to_handle) reaching_reward = 0.25 * (1 - np.tanh(1.0 * dist)) reward = reaching_reward # Else this is the sparse reward setting else: # Provide reward if only Arm 1 is grasping the hammer and the handle lifted above the pre-defined threshold if self._check_success(): reward = 2.0 if self.reward_scale is not None: reward *= self.reward_scale / 2.0 return reward def _load_model(self): """ Loads an xml model, puts it in self.model """ super()._load_model() # Adjust base pose(s) accordingly if self.env_configuration == "bimanual": xpos = self.robots[0].robot_model.base_xpos_offset["table"]( self.table_full_size[0]) self.robots[0].robot_model.set_base_xpos(xpos) else: if self.env_configuration == "single-arm-opposed": # Set up robots facing towards each other by rotating them from their default position for robot, rotation, offset in zip(self.robots, (np.pi / 2, -np.pi / 2), (-0.25, 0.25)): xpos = robot.robot_model.base_xpos_offset["table"]( self.table_full_size[0]) rot = np.array((0, 0, rotation)) xpos = T.euler2mat(rot) @ np.array(xpos) xpos += np.array((0, offset, 0)) robot.robot_model.set_base_xpos(xpos) robot.robot_model.set_base_ori(rot) else: # "single-arm-parallel" configuration setting # Set up robots parallel to each other but offset from the center for robot, offset in zip(self.robots, (-0.6, 0.6)): xpos = robot.robot_model.base_xpos_offset["table"]( self.table_full_size[0]) xpos = np.array(xpos) + np.array((0, offset, 0)) robot.robot_model.set_base_xpos(xpos) # load model for table top workspace mujoco_arena = TableArena(table_full_size=self.table_true_size, table_friction=self.table_friction, table_offset=self.table_offset) # Arena always gets set to zero origin mujoco_arena.set_origin([0, 0, 0]) # Modify default agentview camera mujoco_arena.set_camera( camera_name="agentview", pos=[ 0.8894354364730311, -3.481824231498976e-08, 1.7383813133506494 ], quat=[ 0.6530981063842773, 0.2710406184196472, 0.27104079723358154, 0.6530979871749878 ], ) # initialize objects of interest self.hammer = HammerObject(name="hammer") # Create placement initializer if self.placement_initializer is not None: self.placement_initializer.reset() self.placement_initializer.add_objects(self.hammer) else: # Set rotation about y-axis if hammer starts on table else rotate about z if it starts in gripper rotation_axis = "y" if self.prehensile else "z" self.placement_initializer = UniformRandomSampler( name="ObjectSampler", mujoco_objects=self.hammer, x_range=[-0.1, 0.1], y_range=[-0.05, 0.05], rotation=None, rotation_axis=rotation_axis, ensure_object_boundary_in_range=False, ensure_valid_placement=True, reference_pos=self.table_offset, ) # task includes arena, robot, and objects of interest self.model = ManipulationTask( mujoco_arena=mujoco_arena, mujoco_robots=[robot.robot_model for robot in self.robots], mujoco_objects=self.hammer, ) def _setup_references(self): """ Sets up references to important components. A reference is typically an index or a list of indices that point to the corresponding elements in a flatten array, which is how MuJoCo stores physical simulation data. """ super()._setup_references() # Hammer object references from this env self.hammer_body_id = self.sim.model.body_name2id( self.hammer.root_body) self.hammer_handle_geom_id = self.sim.model.geom_name2id( self.hammer.handle_geoms[0]) # General env references self.table_top_id = self.sim.model.site_name2id("table_top") def _setup_observables(self): """ Sets up observables to be used for this environment. Creates object-based observables if enabled Returns: OrderedDict: Dictionary mapping observable names to its corresponding Observable object """ observables = super()._setup_observables() # low-level object information if self.use_object_obs: # Get robot prefix and define observables modality if self.env_configuration == "bimanual": pf0 = self.robots[0].robot_model.naming_prefix + "right_" pf1 = self.robots[0].robot_model.naming_prefix + "left_" else: pf0 = self.robots[0].robot_model.naming_prefix pf1 = self.robots[1].robot_model.naming_prefix modality = "object" # position and rotation of hammer @sensor(modality=modality) def hammer_pos(obs_cache): return np.array(self._hammer_pos) @sensor(modality=modality) def hammer_quat(obs_cache): return np.array(self._hammer_quat) @sensor(modality=modality) def handle_xpos(obs_cache): return np.array(self._handle_xpos) @sensor(modality=modality) def gripper0_to_handle(obs_cache): return (obs_cache["handle_xpos"] - obs_cache[f"{pf0}eef_pos"] if "handle_xpos" in obs_cache and f"{pf0}eef_pos" in obs_cache else np.zeros(3)) @sensor(modality=modality) def gripper1_to_handle(obs_cache): return (obs_cache["handle_xpos"] - obs_cache[f"{pf1}eef_pos"] if "handle_xpos" in obs_cache and f"{pf1}eef_pos" in obs_cache else np.zeros(3)) sensors = [ hammer_pos, hammer_quat, handle_xpos, gripper0_to_handle, gripper1_to_handle ] names = [s.__name__ for s in sensors] # Create observables for name, s in zip(names, sensors): observables[name] = Observable( name=name, sensor=s, sampling_rate=self.control_freq, ) return observables def _reset_internal(self): """ Resets simulation internal configurations. """ super()._reset_internal() # Reset all object positions using initializer sampler if we're not directly loading from an xml if not self.deterministic_reset: # Sample from the placement initializer for all objects object_placements = self.placement_initializer.sample() # Loop through all objects and reset their positions for obj_pos, obj_quat, obj in object_placements.values(): # If prehensile, set the object normally if self.prehensile: self.sim.data.set_joint_qpos( obj.joints[0], np.concatenate([np.array(obj_pos), np.array(obj_quat)])) # Else, set the object in the hand of the robot and loop a few steps to guarantee the robot is grasping # the object initially else: eef_rot_quat = T.mat2quat( T.euler2mat( [np.pi - T.mat2euler(self._eef0_xmat)[2], 0, 0])) obj_quat = T.quat_multiply(obj_quat, eef_rot_quat) for j in range(100): # Set object in hand self.sim.data.set_joint_qpos( obj.joints[0], np.concatenate( [self._eef0_xpos, np.array(obj_quat)])) # Close gripper (action = 1) and prevent arm from moving if self.env_configuration == "bimanual": # Execute no-op action with gravity compensation torques = np.concatenate([ self.robots[0].controller["right"]. torque_compensation, self.robots[0].controller["left"]. torque_compensation, ]) self.sim.data.ctrl[self.robots[ 0]._ref_joint_actuator_indexes] = torques # Execute gripper action self.robots[0].grip_action( gripper=self.robots[0].gripper["right"], gripper_action=[1]) else: # Execute no-op action with gravity compensation self.sim.data.ctrl[self.robots[ 0]._ref_joint_actuator_indexes] = self.robots[ 0].controller.torque_compensation self.sim.data.ctrl[self.robots[ 1]._ref_joint_actuator_indexes] = self.robots[ 1].controller.torque_compensation # Execute gripper action self.robots[0].grip_action( gripper=self.robots[0].gripper, gripper_action=[1]) # Take forward step self.sim.step() def _get_task_info(self): """ Helper function that grabs the current relevant locations of objects of interest within the environment Returns: 4-tuple: - (bool) True if Arm0 is grasping any part of the hammer - (bool) True if Arm1 is grasping the hammer handle - (float) Height of the hammer body - (float) Height of the table surface """ # Get height of hammer and table and define height threshold hammer_angle_offset = (self.hammer.handle_length / 2 + 2 * self.hammer.head_halfsize) * np.sin( self._hammer_angle) hammer_height = ( self.sim.data.geom_xpos[self.hammer_handle_geom_id][2] - self.hammer.top_offset[2] - hammer_angle_offset) table_height = self.sim.data.site_xpos[self.table_top_id][2] # Check if any Arm's gripper is grasping the hammer handle (g0, g1) = ((self.robots[0].gripper["right"], self.robots[0].gripper["left"]) if self.env_configuration == "bimanual" else (self.robots[0].gripper, self.robots[1].gripper)) arm0_grasp_any = self._check_grasp(gripper=g0, object_geoms=self.hammer) arm1_grasp_handle = self._check_grasp( gripper=g1, object_geoms=self.hammer.handle_geoms) # Return all relevant values return arm0_grasp_any, arm1_grasp_handle, hammer_height, table_height def _check_success(self): """ Check if hammer is successfully handed off Returns: bool: True if handover has been completed """ # Grab relevant params arm0_grasp_any, arm1_grasp_handle, hammer_height, table_height = self._get_task_info( ) return (True if arm1_grasp_handle and not arm0_grasp_any and hammer_height - table_height > self.height_threshold else False) @property def _handle_xpos(self): """ Grab the position of the hammer handle. Returns: np.array: (x,y,z) position of handle """ return self.sim.data.geom_xpos[self.hammer_handle_geom_id] @property def _hammer_pos(self): """ Grab the position of the hammer body. Returns: np.array: (x,y,z) position of body """ return np.array(self.sim.data.body_xpos[self.hammer_body_id]) @property def _hammer_quat(self): """ Grab the orientation of the hammer body. Returns: np.array: (x,y,z,w) quaternion of the hammer body """ return T.convert_quat(self.sim.data.body_xquat[self.hammer_body_id], to="xyzw") @property def _hammer_angle(self): """ Calculate the angle of hammer with the ground, relative to it resting horizontally Returns: float: angle in radians """ mat = T.quat2mat(self._hammer_quat) z_unit = [0, 0, 1] z_rotated = np.matmul(mat, z_unit) return np.pi / 2 - np.arccos(np.dot(z_unit, z_rotated)) @property def _gripper_0_to_handle(self): """ Calculate vector from the left gripper to the hammer handle. Returns: np.array: (dx,dy,dz) distance vector between handle and EEF0 """ return self._handle_xpos - self._eef0_xpos @property def _gripper_1_to_handle(self): """ Calculate vector from the right gripper to the hammer handle. Returns: np.array: (dx,dy,dz) distance vector between handle and EEF1 """ return self._handle_xpos - self._eef1_xpos
def _load_model(self): """ Loads an xml model, puts it in self.model """ super()._load_model() # Adjust base pose(s) accordingly if self.env_configuration == "bimanual": xpos = self.robots[0].robot_model.base_xpos_offset["table"]( self.table_full_size[0]) self.robots[0].robot_model.set_base_xpos(xpos) else: if self.env_configuration == "single-arm-opposed": # Set up robots facing towards each other by rotating them from their default position for robot, rotation, offset in zip(self.robots, (np.pi / 2, -np.pi / 2), (-0.25, 0.25)): xpos = robot.robot_model.base_xpos_offset["table"]( self.table_full_size[0]) rot = np.array((0, 0, rotation)) xpos = T.euler2mat(rot) @ np.array(xpos) xpos += np.array((0, offset, 0)) robot.robot_model.set_base_xpos(xpos) robot.robot_model.set_base_ori(rot) else: # "single-arm-parallel" configuration setting # Set up robots parallel to each other but offset from the center for robot, offset in zip(self.robots, (-0.6, 0.6)): xpos = robot.robot_model.base_xpos_offset["table"]( self.table_full_size[0]) xpos = np.array(xpos) + np.array((0, offset, 0)) robot.robot_model.set_base_xpos(xpos) # load model for table top workspace mujoco_arena = TableArena(table_full_size=self.table_true_size, table_friction=self.table_friction, table_offset=self.table_offset) # Arena always gets set to zero origin mujoco_arena.set_origin([0, 0, 0]) # Modify default agentview camera mujoco_arena.set_camera(camera_name="agentview", pos=[ 0.8894354364730311, -3.481824231498976e-08, 1.7383813133506494 ], quat=[ 0.6530981063842773, 0.2710406184196472, 0.27104079723358154, 0.6530979871749878 ]) # initialize objects of interest self.hammer = HammerObject(name="hammer") # Create placement initializer if self.placement_initializer is not None: self.placement_initializer.reset() self.placement_initializer.add_objects(self.hammer) else: # Set rotation about y-axis if hammer starts on table else rotate about z if it starts in gripper rotation_axis = 'y' if self.prehensile else 'z' self.placement_initializer = UniformRandomSampler( name="ObjectSampler", mujoco_objects=self.hammer, x_range=[-0.1, 0.1], y_range=[-0.05, 0.05], rotation=None, rotation_axis=rotation_axis, ensure_object_boundary_in_range=False, ensure_valid_placement=True, reference_pos=self.table_offset, ) # task includes arena, robot, and objects of interest self.model = ManipulationTask( mujoco_arena=mujoco_arena, mujoco_robots=[robot.robot_model for robot in self.robots], mujoco_objects=self.hammer, )
class TwoArmLift(TwoArmEnv): """ This class corresponds to the lifting task for two robot arms. Args: robots (str or list of str): Specification for specific robot arm(s) to be instantiated within this env (e.g: "Sawyer" would generate one arm; ["Panda", "Panda", "Sawyer"] would generate three robot arms) Note: Must be either 2 single single-arm robots or 1 bimanual robot! env_configuration (str): Specifies how to position the robots within the environment. Can be either: :`'bimanual'`: Only applicable for bimanual robot setups. Sets up the (single) bimanual robot on the -x side of the table :`'single-arm-parallel'`: Only applicable for multi single arm setups. Sets up the (two) single armed robots next to each other on the -x side of the table :`'single-arm-opposed'`: Only applicable for multi single arm setups. Sets up the (two) single armed robots opposed from each others on the opposite +/-y sides of the table. Note that "default" corresponds to either "bimanual" if a bimanual robot is used or "single-arm-opposed" if two single-arm robots are used. controller_configs (str or list of dict): If set, contains relevant controller parameters for creating a custom controller. Else, uses the default controller for this specific task. Should either be single dict if same controller is to be used for all robots or else it should be a list of the same length as "robots" param gripper_types (str or list of str): type of gripper, used to instantiate gripper models from gripper factory. Default is "default", which is the default grippers(s) associated with the robot(s) the 'robots' specification. None removes the gripper, and any other (valid) model overrides the default gripper. Should either be single str if same gripper type is to be used for all robots or else it should be a list of the same length as "robots" param initialization_noise (dict or list of dict): Dict containing the initialization noise parameters. The expected keys and corresponding value types are specified below: :`'magnitude'`: The scale factor of uni-variate random noise applied to each of a robot's given initial joint positions. Setting this value to `None` or 0.0 results in no noise being applied. If "gaussian" type of noise is applied then this magnitude scales the standard deviation applied, If "uniform" type of noise is applied then this magnitude sets the bounds of the sampling range :`'type'`: Type of noise to apply. Can either specify "gaussian" or "uniform" Should either be single dict if same noise value is to be used for all robots or else it should be a list of the same length as "robots" param :Note: Specifying "default" will automatically use the default noise settings. Specifying None will automatically create the required dict with "magnitude" set to 0.0. table_full_size (3-tuple): x, y, and z dimensions of the table. table_friction (3-tuple): the three mujoco friction parameters for the table. use_camera_obs (bool): if True, every observation includes rendered image(s) use_object_obs (bool): if True, include object (cube) information in the observation. reward_scale (None or float): Scales the normalized reward function by the amount specified. If None, environment reward remains unnormalized reward_shaping (bool): if True, use dense rewards. placement_initializer (ObjectPositionSampler): if provided, will be used to place objects on every reset, else a UniformRandomSampler is used by default. has_renderer (bool): If true, render the simulation state in a viewer instead of headless mode. has_offscreen_renderer (bool): True if using off-screen rendering render_camera (str): Name of camera to render if `has_renderer` is True. Setting this value to 'None' will result in the default angle being applied, which is useful as it can be dragged / panned by the user using the mouse render_collision_mesh (bool): True if rendering collision meshes in camera. False otherwise. render_visual_mesh (bool): True if rendering visual meshes in camera. False otherwise. render_gpu_device_id (int): corresponds to the GPU device id to use for offscreen rendering. Defaults to -1, in which case the device will be inferred from environment variables (GPUS or CUDA_VISIBLE_DEVICES). control_freq (float): how many control signals to receive in every second. This sets the amount of simulation time that passes between every action input. horizon (int): Every episode lasts for exactly @horizon timesteps. ignore_done (bool): True if never terminating the environment (ignore @horizon). hard_reset (bool): If True, re-loads model, sim, and render object upon a reset call, else, only calls sim.reset and resets all robosuite-internal variables camera_names (str or list of str): name of camera to be rendered. Should either be single str if same name is to be used for all cameras' rendering or else it should be a list of cameras to render. :Note: At least one camera must be specified if @use_camera_obs is True. :Note: To render all robots' cameras of a certain type (e.g.: "robotview" or "eye_in_hand"), use the convention "all-{name}" (e.g.: "all-robotview") to automatically render all camera images from each robot's camera list). camera_heights (int or list of int): height of camera frame. Should either be single int if same height is to be used for all cameras' frames or else it should be a list of the same length as "camera names" param. camera_widths (int or list of int): width of camera frame. Should either be single int if same width is to be used for all cameras' frames or else it should be a list of the same length as "camera names" param. camera_depths (bool or list of bool): True if rendering RGB-D, and RGB otherwise. Should either be single bool if same depth setting is to be used for all cameras or else it should be a list of the same length as "camera names" param. Raises: ValueError: [Invalid number of robots specified] ValueError: [Invalid env configuration] ValueError: [Invalid robots for specified env configuration] """ def __init__( self, robots, env_configuration="single-arm-opposed", controller_configs=None, gripper_types="default", initialization_noise="default", table_full_size=(0.8, 0.8, 0.05), table_friction=(1., 5e-3, 1e-4), use_camera_obs=True, use_object_obs=True, reward_scale=1.0, reward_shaping=False, placement_initializer=None, has_renderer=False, has_offscreen_renderer=True, render_camera="frontview", render_collision_mesh=False, render_visual_mesh=True, render_gpu_device_id=-1, control_freq=20, horizon=1000, ignore_done=False, hard_reset=True, camera_names="agentview", camera_heights=256, camera_widths=256, camera_depths=False, ): # settings for table top self.table_full_size = table_full_size self.table_friction = table_friction self.table_offset = np.array((0, 0, 0.8)) # reward configuration self.reward_scale = reward_scale self.reward_shaping = reward_shaping # whether to use ground-truth object states self.use_object_obs = use_object_obs # object placement initializer self.placement_initializer = placement_initializer super().__init__( robots=robots, env_configuration=env_configuration, controller_configs=controller_configs, mount_types="default", gripper_types=gripper_types, initialization_noise=initialization_noise, use_camera_obs=use_camera_obs, has_renderer=has_renderer, has_offscreen_renderer=has_offscreen_renderer, render_camera=render_camera, render_collision_mesh=render_collision_mesh, render_visual_mesh=render_visual_mesh, render_gpu_device_id=render_gpu_device_id, control_freq=control_freq, horizon=horizon, ignore_done=ignore_done, hard_reset=hard_reset, camera_names=camera_names, camera_heights=camera_heights, camera_widths=camera_widths, camera_depths=camera_depths, ) def reward(self, action=None): """ Reward function for the task. Sparse un-normalized reward: - a discrete reward of 3.0 is provided if the pot is lifted and is parallel within 30 deg to the table Un-normalized summed components if using reward shaping: - Reaching: in [0, 0.5], per-arm component that is proportional to the distance between each arm and its respective pot handle, and exactly 0.5 when grasping the handle - Note that the agent only gets the lifting reward when flipping no more than 30 degrees. - Grasping: in {0, 0.25}, binary per-arm component awarded if the gripper is grasping its correct handle - Lifting: in [0, 1.5], proportional to the pot's height above the table, and capped at a certain threshold Note that the final reward is normalized and scaled by reward_scale / 3.0 as well so that the max score is equal to reward_scale Args: action (np array): [NOT USED] Returns: float: reward value """ reward = 0 # check if the pot is tilted more than 30 degrees mat = T.quat2mat(self._pot_quat) z_unit = [0, 0, 1] z_rotated = np.matmul(mat, z_unit) cos_z = np.dot(z_unit, z_rotated) cos_30 = np.cos(np.pi / 6) direction_coef = 1 if cos_z >= cos_30 else 0 # check for goal completion: cube is higher than the table top above a margin if self._check_success(): reward = 3.0 * direction_coef # use a shaping reward elif self.reward_shaping: # lifting reward pot_bottom_height = self.sim.data.site_xpos[self.pot_center_id][2] - self.pot.top_offset[2] table_height = self.sim.data.site_xpos[self.table_top_id][2] elevation = pot_bottom_height - table_height r_lift = min(max(elevation - 0.05, 0), 0.15) reward += 10. * direction_coef * r_lift _gripper0_to_handle0 = self._gripper0_to_handle0 _gripper1_to_handle1 = self._gripper1_to_handle1 # gh stands for gripper-handle # When grippers are far away, tell them to be closer # Get contacts (g0, g1) = (self.robots[0].gripper["right"], self.robots[0].gripper["left"]) if \ self.env_configuration == "bimanual" else (self.robots[0].gripper, self.robots[1].gripper) _g0h_dist = np.linalg.norm(_gripper0_to_handle0) _g1h_dist = np.linalg.norm(_gripper1_to_handle1) # Grasping reward if self._check_grasp(gripper=g0, object_geoms=self.pot.handle0_geoms): reward += 0.25 # Reaching reward reward += 0.5 * (1 - np.tanh(10.0 * _g0h_dist)) # Grasping reward if self._check_grasp(gripper=g1, object_geoms=self.pot.handle1_geoms): reward += 0.25 # Reaching reward reward += 0.5 * (1 - np.tanh(10.0 * _g1h_dist)) if self.reward_scale is not None: reward *= self.reward_scale / 3.0 return reward def _load_model(self): """ Loads an xml model, puts it in self.model """ super()._load_model() # Adjust base pose(s) accordingly if self.env_configuration == "bimanual": xpos = self.robots[0].robot_model.base_xpos_offset["table"](self.table_full_size[0]) self.robots[0].robot_model.set_base_xpos(xpos) else: if self.env_configuration == "single-arm-opposed": # Set up robots facing towards each other by rotating them from their default position for robot, rotation in zip(self.robots, (np.pi/2, -np.pi/2)): xpos = robot.robot_model.base_xpos_offset["table"](self.table_full_size[0]) rot = np.array((0, 0, rotation)) xpos = T.euler2mat(rot) @ np.array(xpos) robot.robot_model.set_base_xpos(xpos) robot.robot_model.set_base_ori(rot) else: # "single-arm-parallel" configuration setting # Set up robots parallel to each other but offset from the center for robot, offset in zip(self.robots, (-0.25, 0.25)): xpos = robot.robot_model.base_xpos_offset["table"](self.table_full_size[0]) xpos = np.array(xpos) + np.array((0, offset, 0)) robot.robot_model.set_base_xpos(xpos) # load model for table top workspace mujoco_arena = TableArena( table_full_size=self.table_full_size, table_friction=self.table_friction, table_offset=self.table_offset, ) # Arena always gets set to zero origin mujoco_arena.set_origin([0, 0, 0]) # initialize objects of interest self.pot = PotWithHandlesObject(name="pot") # Create placement initializer if self.placement_initializer is not None: self.placement_initializer.reset() self.placement_initializer.add_objects(self.pot) else: self.placement_initializer = UniformRandomSampler( name="ObjectSampler", mujoco_objects=self.pot, x_range=[-0.03, 0.03], y_range=[-0.03, 0.03], ensure_object_boundary_in_range=False, ensure_valid_placement=True, reference_pos=self.table_offset, rotation=(np.pi + -np.pi / 3, np.pi + np.pi / 3), ) # task includes arena, robot, and objects of interest self.model = ManipulationTask( mujoco_arena=mujoco_arena, mujoco_robots=[robot.robot_model for robot in self.robots], mujoco_objects=self.pot, ) def _get_reference(self): """ Sets up references to important components. A reference is typically an index or a list of indices that point to the corresponding elements in a flatten array, which is how MuJoCo stores physical simulation data. """ super()._get_reference() # Additional object references from this env self.pot_body_id = self.sim.model.body_name2id(self.pot.root_body) self.handle0_site_id = self.sim.model.site_name2id(self.pot.important_sites["handle0"]) self.handle1_site_id = self.sim.model.site_name2id(self.pot.important_sites["handle1"]) self.table_top_id = self.sim.model.site_name2id("table_top") self.pot_center_id = self.sim.model.site_name2id(self.pot.important_sites["center"]) def _reset_internal(self): """ Resets simulation internal configurations. """ super()._reset_internal() # Reset all object positions using initializer sampler if we're not directly loading from an xml if not self.deterministic_reset: # Sample from the placement initializer for all objects object_placements = self.placement_initializer.sample() # Loop through all objects and reset their positions for obj_pos, obj_quat, obj in object_placements.values(): self.sim.data.set_joint_qpos(obj.joints[0], np.concatenate([np.array(obj_pos), np.array(obj_quat)])) def _get_observation(self): """ Returns an OrderedDict containing observations [(name_string, np.array), ...]. Important keys: `'robot-state'`: contains robot-centric information. `'object-state'`: requires @self.use_object_obs to be True. Contains object-centric information. `'image'`: requires @self.use_camera_obs to be True. Contains a rendered frame from the simulation. `'depth'`: requires @self.use_camera_obs and @self.camera_depth to be True. Contains a rendered depth map from the simulation Returns: OrderedDict: Observations from the environment """ di = super()._get_observation() # low-level object information if self.use_object_obs: # Get robot prefix if self.env_configuration == "bimanual": pr0 = self.robots[0].robot_model.naming_prefix + "left_" pr1 = self.robots[0].robot_model.naming_prefix + "right_" else: pr0 = self.robots[0].robot_model.naming_prefix pr1 = self.robots[1].robot_model.naming_prefix # position and rotation of object cube_pos = np.array(self.sim.data.body_xpos[self.pot_body_id]) cube_quat = T.convert_quat( self.sim.data.body_xquat[self.pot_body_id], to="xyzw" ) di["cube_pos"] = cube_pos di["cube_quat"] = cube_quat di["handle0_xpos"] = np.array(self._handle0_xpos) di["handle1_xpos"] = np.array(self._handle1_xpos) di[pr0 + "gripper_to_handle0"] = np.array(self._gripper0_to_handle0) di[pr1 + "gripper_to_handle1"] = np.array(self._gripper1_to_handle1) di["object-state"] = np.concatenate( [ di["cube_pos"], di["cube_quat"], di["handle0_xpos"], di["handle1_xpos"], di[pr0 + "gripper_to_handle0"], di[pr1 + "gripper_to_handle1"], ] ) return di def visualize(self, vis_settings): """ In addition to super call, visualize gripper site proportional to the distance to each handle. Args: vis_settings (dict): Visualization keywords mapped to T/F, determining whether that specific component should be visualized. Should have "grippers" keyword as well as any other relevant options specified. """ # Run superclass method first super().visualize(vis_settings=vis_settings) # Color the gripper visualization site according to its distance to each handle if vis_settings["grippers"]: handles = [self.pot.important_sites[f"handle{i}"] for i in range(2)] grippers = [self.robots[0].gripper[arm] for arm in self.robots[0].arms] if \ self.env_configuration == "bimanual" else [robot.gripper for robot in self.robots] for gripper, handle in zip(grippers, handles): self._visualize_gripper_to_target(gripper=gripper, target=handle, target_type="site") def _check_success(self): """ Check if pot is successfully lifted Returns: bool: True if pot is lifted """ pot_bottom_height = self.sim.data.site_xpos[self.pot_center_id][2] - self.pot.top_offset[2] table_height = self.sim.data.site_xpos[self.table_top_id][2] # cube is higher than the table top above a margin return pot_bottom_height > table_height + 0.10 @property def _handle0_xpos(self): """ Grab the position of the left (blue) hammer handle. Returns: np.array: (x,y,z) position of handle """ return self.sim.data.site_xpos[self.handle0_site_id] @property def _handle1_xpos(self): """ Grab the position of the right (green) hammer handle. Returns: np.array: (x,y,z) position of handle """ return self.sim.data.site_xpos[self.handle1_site_id] @property def _pot_quat(self): """ Grab the orientation of the pot body. Returns: np.array: (x,y,z,w) quaternion of the pot body """ return T.convert_quat(self.sim.data.body_xquat[self.pot_body_id], to="xyzw") @property def _gripper0_to_handle0(self): """ Calculate vector from the left gripper to the left pot handle. Returns: np.array: (dx,dy,dz) distance vector between handle and EEF0 """ return self._handle0_xpos - self._eef0_xpos @property def _gripper1_to_handle1(self): """ Calculate vector from the right gripper to the right pot handle. Returns: np.array: (dx,dy,dz) distance vector between handle and EEF0 """ return self._handle1_xpos - self._eef1_xpos
def _load_model(self): """ Loads an xml model, puts it in self.model """ super()._load_model() # Adjust base pose accordingly xpos = self.robots[0].robot_model.base_xpos_offset["table"]( self.table_full_size[0]) self.robots[0].robot_model.set_base_xpos(xpos) # load model for table top workspace mujoco_arena = TableArena( table_full_size=self.table_full_size, table_offset=self.table_offset, ) # Arena always gets set to zero origin mujoco_arena.set_origin([0, 0, 0]) # Modify default agentview camera mujoco_arena.set_camera(camera_name="agentview", pos=[ 0.5986131746834771, -4.392035683362857e-09, 1.5903500240372423 ], quat=[ 0.6380177736282349, 0.3048497438430786, 0.30484986305236816, 0.6380177736282349 ]) # initialize objects of interest self.door = DoorObject( name="Door", friction=0.0, damping=0.1, lock=self.use_latch, ) # Create placement initializer if self.placement_initializer is not None: self.placement_initializer.reset() self.placement_initializer.add_objects(self.door) else: self.placement_initializer = UniformRandomSampler( name="ObjectSampler", mujoco_objects=self.door, x_range=[0.07, 0.09], y_range=[-0.01, 0.01], rotation=(-np.pi / 2. - 0.25, -np.pi / 2.), rotation_axis='z', ensure_object_boundary_in_range=False, ensure_valid_placement=True, reference_pos=self.table_offset, ) # task includes arena, robot, and objects of interest self.model = ManipulationTask( mujoco_arena=mujoco_arena, mujoco_robots=[robot.robot_model for robot in self.robots], mujoco_objects=self.door, )
def _load_model(self): """ Loads an xml model, puts it in self.model """ super()._load_model() # Adjust base pose accordingly xpos = self.robots[0].robot_model.base_xpos_offset["table"]( self.table_full_size[0]) self.robots[0].robot_model.set_base_xpos(xpos) # load model for table top workspace mujoco_arena = PegsArena( table_full_size=self.table_full_size, table_friction=self.table_friction, table_offset=self.table_offset, ) # Arena always gets set to zero origin mujoco_arena.set_origin([0, 0, 0]) # define nuts self.nuts = [] nut_names = ("SquareNut", "RoundNut") # Create default (SequentialCompositeSampler) sampler if it has not already been specified if self.placement_initializer is None: self.placement_initializer = SequentialCompositeSampler( name="ObjectSampler") for nut_name, default_y_range in zip( nut_names, ([0.11, 0.225], [-0.225, -0.11])): self.placement_initializer.append_sampler( sampler=UniformRandomSampler( name=f"{nut_name}Sampler", x_range=[-0.115, -0.11], y_range=default_y_range, rotation=None, rotation_axis='z', ensure_object_boundary_in_range=False, ensure_valid_placement=True, reference_pos=self.table_offset, z_offset=0.02, )) # Reset sampler before adding any new samplers / objects self.placement_initializer.reset() for i, (nut_cls, nut_name) in enumerate( zip( (SquareNutObject, RoundNutObject), nut_names, )): nut = nut_cls(name=nut_name) self.nuts.append(nut) # Add this nut to the placement initializer if isinstance(self.placement_initializer, SequentialCompositeSampler): # assumes we have two samplers so we add nuts to them self.placement_initializer.add_objects_to_sampler( sampler_name=f"{nut_name}Sampler", mujoco_objects=nut) else: # This is assumed to be a flat sampler, so we just add all nuts to this sampler self.placement_initializer.add_objects(nut) # task includes arena, robot, and objects of interest self.model = ManipulationTask( mujoco_arena=mujoco_arena, mujoco_robots=[robot.robot_model for robot in self.robots], mujoco_objects=self.nuts, )
class Door(SingleArmEnv): """ This class corresponds to the door opening task for a single robot arm. Args: robots (str or list of str): Specification for specific robot arm(s) to be instantiated within this env (e.g: "Sawyer" would generate one arm; ["Panda", "Panda", "Sawyer"] would generate three robot arms) Note: Must be a single single-arm robot! env_configuration (str): Specifies how to position the robots within the environment (default is "default"). For most single arm environments, this argument has no impact on the robot setup. controller_configs (str or list of dict): If set, contains relevant controller parameters for creating a custom controller. Else, uses the default controller for this specific task. Should either be single dict if same controller is to be used for all robots or else it should be a list of the same length as "robots" param gripper_types (str or list of str): type of gripper, used to instantiate gripper models from gripper factory. Default is "default", which is the default grippers(s) associated with the robot(s) the 'robots' specification. None removes the gripper, and any other (valid) model overrides the default gripper. Should either be single str if same gripper type is to be used for all robots or else it should be a list of the same length as "robots" param initialization_noise (dict or list of dict): Dict containing the initialization noise parameters. The expected keys and corresponding value types are specified below: :`'magnitude'`: The scale factor of uni-variate random noise applied to each of a robot's given initial joint positions. Setting this value to `None` or 0.0 results in no noise being applied. If "gaussian" type of noise is applied then this magnitude scales the standard deviation applied, If "uniform" type of noise is applied then this magnitude sets the bounds of the sampling range :`'type'`: Type of noise to apply. Can either specify "gaussian" or "uniform" Should either be single dict if same noise value is to be used for all robots or else it should be a list of the same length as "robots" param :Note: Specifying "default" will automatically use the default noise settings. Specifying None will automatically create the required dict with "magnitude" set to 0.0. use_latch (bool): if True, uses a spring-loaded handle and latch to "lock" the door closed initially Otherwise, door is instantiated with a fixed handle use_camera_obs (bool): if True, every observation includes rendered image(s) use_object_obs (bool): if True, include object (cube) information in the observation. reward_scale (None or float): Scales the normalized reward function by the amount specified. If None, environment reward remains unnormalized reward_shaping (bool): if True, use dense rewards. placement_initializer (ObjectPositionSampler): if provided, will be used to place objects on every reset, else a UniformRandomSampler is used by default. has_renderer (bool): If true, render the simulation state in a viewer instead of headless mode. has_offscreen_renderer (bool): True if using off-screen rendering render_camera (str): Name of camera to render if `has_renderer` is True. Setting this value to 'None' will result in the default angle being applied, which is useful as it can be dragged / panned by the user using the mouse render_collision_mesh (bool): True if rendering collision meshes in camera. False otherwise. render_visual_mesh (bool): True if rendering visual meshes in camera. False otherwise. render_gpu_device_id (int): corresponds to the GPU device id to use for offscreen rendering. Defaults to -1, in which case the device will be inferred from environment variables (GPUS or CUDA_VISIBLE_DEVICES). control_freq (float): how many control signals to receive in every second. This sets the amount of simulation time that passes between every action input. horizon (int): Every episode lasts for exactly @horizon timesteps. ignore_done (bool): True if never terminating the environment (ignore @horizon). hard_reset (bool): If True, re-loads model, sim, and render object upon a reset call, else, only calls sim.reset and resets all robosuite-internal variables camera_names (str or list of str): name of camera to be rendered. Should either be single str if same name is to be used for all cameras' rendering or else it should be a list of cameras to render. :Note: At least one camera must be specified if @use_camera_obs is True. :Note: To render all robots' cameras of a certain type (e.g.: "robotview" or "eye_in_hand"), use the convention "all-{name}" (e.g.: "all-robotview") to automatically render all camera images from each robot's camera list). camera_heights (int or list of int): height of camera frame. Should either be single int if same height is to be used for all cameras' frames or else it should be a list of the same length as "camera names" param. camera_widths (int or list of int): width of camera frame. Should either be single int if same width is to be used for all cameras' frames or else it should be a list of the same length as "camera names" param. camera_depths (bool or list of bool): True if rendering RGB-D, and RGB otherwise. Should either be single bool if same depth setting is to be used for all cameras or else it should be a list of the same length as "camera names" param. Raises: AssertionError: [Invalid number of robots specified] """ def __init__( self, robots, env_configuration="default", controller_configs=None, gripper_types="default", initialization_noise="default", use_latch=True, use_camera_obs=True, use_object_obs=True, reward_scale=1.0, reward_shaping=False, placement_initializer=None, has_renderer=False, has_offscreen_renderer=True, render_camera="frontview", render_collision_mesh=False, render_visual_mesh=True, render_gpu_device_id=-1, control_freq=20, horizon=1000, ignore_done=False, hard_reset=True, camera_names="agentview", camera_heights=256, camera_widths=256, camera_depths=False, ): # settings for table top (hardcoded since it's not an essential part of the environment) self.table_full_size = (0.8, 0.3, 0.05) self.table_offset = (-0.2, -0.35, 0.8) # reward configuration self.use_latch = use_latch self.reward_scale = reward_scale self.reward_shaping = reward_shaping # whether to use ground-truth object states self.use_object_obs = use_object_obs # object placement initializer self.placement_initializer = placement_initializer super().__init__( robots=robots, env_configuration=env_configuration, controller_configs=controller_configs, mount_types="default", gripper_types=gripper_types, initialization_noise=initialization_noise, use_camera_obs=use_camera_obs, has_renderer=has_renderer, has_offscreen_renderer=has_offscreen_renderer, render_camera=render_camera, render_collision_mesh=render_collision_mesh, render_visual_mesh=render_visual_mesh, render_gpu_device_id=render_gpu_device_id, control_freq=control_freq, horizon=horizon, ignore_done=ignore_done, hard_reset=hard_reset, camera_names=camera_names, camera_heights=camera_heights, camera_widths=camera_widths, camera_depths=camera_depths, ) def reward(self, action=None): """ Reward function for the task. Sparse un-normalized reward: - a discrete reward of 1.0 is provided if the door is opened Un-normalized summed components if using reward shaping: - Reaching: in [0, 0.25], proportional to the distance between door handle and robot arm - Rotating: in [0, 0.25], proportional to angle rotated by door handled - Note that this component is only relevant if the environment is using the locked door version Note that a successfully completed task (door opened) will return 1.0 irregardless of whether the environment is using sparse or shaped rewards Note that the final reward is normalized and scaled by reward_scale / 1.0 as well so that the max score is equal to reward_scale Args: action (np.array): [NOT USED] Returns: float: reward value """ reward = 0. # sparse completion reward if self._check_success(): reward = 1.0 # else, we consider only the case if we're using shaped rewards elif self.reward_shaping: # Add reaching component dist = np.linalg.norm(self._gripper_to_handle) reaching_reward = 0.25 * (1 - np.tanh(10.0 * dist)) reward += reaching_reward # Add rotating component if we're using a locked door if self.use_latch: handle_qpos = self.sim.data.qpos[self.handle_qpos_addr] reward += np.clip(0.25 * np.abs(handle_qpos / (0.5 * np.pi)), -0.25, 0.25) # Scale reward if requested if self.reward_scale is not None: reward *= self.reward_scale / 1.0 return reward def _load_model(self): """ Loads an xml model, puts it in self.model """ super()._load_model() # Adjust base pose accordingly xpos = self.robots[0].robot_model.base_xpos_offset["table"]( self.table_full_size[0]) self.robots[0].robot_model.set_base_xpos(xpos) # load model for table top workspace mujoco_arena = TableArena( table_full_size=self.table_full_size, table_offset=self.table_offset, ) # Arena always gets set to zero origin mujoco_arena.set_origin([0, 0, 0]) # Modify default agentview camera mujoco_arena.set_camera(camera_name="agentview", pos=[ 0.5986131746834771, -4.392035683362857e-09, 1.5903500240372423 ], quat=[ 0.6380177736282349, 0.3048497438430786, 0.30484986305236816, 0.6380177736282349 ]) # initialize objects of interest self.door = DoorObject( name="Door", friction=0.0, damping=0.1, lock=self.use_latch, ) # Create placement initializer if self.placement_initializer is not None: self.placement_initializer.reset() self.placement_initializer.add_objects(self.door) else: self.placement_initializer = UniformRandomSampler( name="ObjectSampler", mujoco_objects=self.door, x_range=[0.07, 0.09], y_range=[-0.01, 0.01], rotation=(-np.pi / 2. - 0.25, -np.pi / 2.), rotation_axis='z', ensure_object_boundary_in_range=False, ensure_valid_placement=True, reference_pos=self.table_offset, ) # task includes arena, robot, and objects of interest self.model = ManipulationTask( mujoco_arena=mujoco_arena, mujoco_robots=[robot.robot_model for robot in self.robots], mujoco_objects=self.door, ) def _get_reference(self): """ Sets up references to important components. A reference is typically an index or a list of indices that point to the corresponding elements in a flatten array, which is how MuJoCo stores physical simulation data. """ super()._get_reference() # Additional object references from this env self.object_body_ids = dict() self.object_body_ids["door"] = self.sim.model.body_name2id( self.door.door_body) self.object_body_ids["frame"] = self.sim.model.body_name2id( self.door.frame_body) self.object_body_ids["latch"] = self.sim.model.body_name2id( self.door.latch_body) self.door_handle_site_id = self.sim.model.site_name2id( self.door.important_sites["handle"]) self.hinge_qpos_addr = self.sim.model.get_joint_qpos_addr( self.door.joints[0]) if self.use_latch: self.handle_qpos_addr = self.sim.model.get_joint_qpos_addr( self.door.joints[1]) def _reset_internal(self): """ Resets simulation internal configurations. """ super()._reset_internal() # Reset all object positions using initializer sampler if we're not directly loading from an xml if not self.deterministic_reset: # Sample from the placement initializer for all objects object_placements = self.placement_initializer.sample() # We know we're only setting a single object (the door), so specifically set its pose door_pos, door_quat, _ = object_placements[self.door.name] door_body_id = self.sim.model.body_name2id(self.door.root_body) self.sim.model.body_pos[door_body_id] = door_pos self.sim.model.body_quat[door_body_id] = door_quat def _get_observation(self): """ Returns an OrderedDict containing observations [(name_string, np.array), ...]. Important keys: `'robot-state'`: contains robot-centric information. `'object-state'`: requires @self.use_object_obs to be True. Contains object-centric information. `'image'`: requires @self.use_camera_obs to be True. Contains a rendered frame from the simulation. `'depth'`: requires @self.use_camera_obs and @self.camera_depth to be True. Contains a rendered depth map from the simulation Returns: OrderedDict: Observations from the environment """ di = super()._get_observation() # low-level object information if self.use_object_obs: # Get robot prefix pr = self.robots[0].robot_model.naming_prefix eef_pos = self._eef_xpos door_pos = np.array( self.sim.data.body_xpos[self.object_body_ids["door"]]) handle_pos = self._handle_xpos hinge_qpos = np.array([self.sim.data.qpos[self.hinge_qpos_addr]]) di["door_pos"] = door_pos di["handle_pos"] = handle_pos di[pr + "door_to_eef_pos"] = door_pos - eef_pos di[pr + "handle_to_eef_pos"] = handle_pos - eef_pos di["hinge_qpos"] = hinge_qpos di['object-state'] = np.concatenate([ di["door_pos"], di["handle_pos"], di[pr + "door_to_eef_pos"], di[pr + "handle_to_eef_pos"], di["hinge_qpos"] ]) # Also append handle qpos if we're using a locked door version with rotatable handle if self.use_latch: handle_qpos = np.array( [self.sim.data.qpos[self.handle_qpos_addr]]) di["handle_qpos"] = handle_qpos di['object-state'] = np.concatenate( [di["object-state"], di["handle_qpos"]]) return di def _check_success(self): """ Check if door has been opened. Returns: bool: True if door has been opened """ hinge_qpos = self.sim.data.qpos[self.hinge_qpos_addr] return hinge_qpos > 0.3 def visualize(self, vis_settings): """ In addition to super call, visualize gripper site proportional to the distance to the door handle. Args: vis_settings (dict): Visualization keywords mapped to T/F, determining whether that specific component should be visualized. Should have "grippers" keyword as well as any other relevant options specified. """ # Run superclass method first super().visualize(vis_settings=vis_settings) # Color the gripper visualization site according to its distance to the door handle if vis_settings["grippers"]: self._visualize_gripper_to_target( gripper=self.robots[0].gripper, target=self.door.important_sites["handle"], target_type="site") @property def _handle_xpos(self): """ Grabs the position of the door handle handle. Returns: np.array: Door handle (x,y,z) """ return self.sim.data.site_xpos[self.door_handle_site_id] @property def _gripper_to_handle(self): """ Calculates distance from the gripper to the door handle. Returns: np.array: (x,y,z) distance between handle and eef """ return self._handle_xpos - self._eef_xpos
def _load_model(self): """ Loads an xml model, puts it in self.model """ super()._load_model() # Adjust base pose accordingly xpos = self.robots[0].robot_model.base_xpos_offset["table"]( self.table_full_size[0]) self.robots[0].robot_model.set_base_xpos(xpos) # load model for table top workspace mujoco_arena = TableArena( table_full_size=self.table_full_size, table_friction=self.table_friction, table_offset=self.table_offset, ) # Arena always gets set to zero origin mujoco_arena.set_origin([0, 0, 0]) # initialize objects of interest tex_attrib = { "type": "cube", } mat_attrib = { "texrepeat": "1 1", "specular": "0.4", "shininess": "0.1", } redwood = CustomMaterial( texture="WoodRed", tex_name="redwood", mat_name="redwood_mat", tex_attrib=tex_attrib, mat_attrib=mat_attrib, ) self.cube = BoxObject( name="cube", size_min=[0.020, 0.020, 0.020], # [0.015, 0.015, 0.015], size_max=[0.022, 0.022, 0.022], # [0.018, 0.018, 0.018]) rgba=[1, 0, 0, 1], material=redwood, ) # Create placement initializer if self.placement_initializer is not None: self.placement_initializer.reset() self.placement_initializer.add_objects(self.cube) else: self.placement_initializer = UniformRandomSampler( name="ObjectSampler", mujoco_objects=self.cube, x_range=[-0.03, 0.03], y_range=[-0.03, 0.03], rotation=None, ensure_object_boundary_in_range=False, ensure_valid_placement=True, reference_pos=self.table_offset, z_offset=0.01, ) # task includes arena, robot, and objects of interest self.model = ManipulationTask( mujoco_arena=mujoco_arena, mujoco_robots=[robot.robot_model for robot in self.robots], mujoco_objects=self.cube, )
class Lift(SingleArmEnv): """ This class corresponds to the lifting task for a single robot arm. Args: robots (str or list of str): Specification for specific robot arm(s) to be instantiated within this env (e.g: "Sawyer" would generate one arm; ["Panda", "Panda", "Sawyer"] would generate three robot arms) Note: Must be a single single-arm robot! env_configuration (str): Specifies how to position the robots within the environment (default is "default"). For most single arm environments, this argument has no impact on the robot setup. controller_configs (str or list of dict): If set, contains relevant controller parameters for creating a custom controller. Else, uses the default controller for this specific task. Should either be single dict if same controller is to be used for all robots or else it should be a list of the same length as "robots" param gripper_types (str or list of str): type of gripper, used to instantiate gripper models from gripper factory. Default is "default", which is the default grippers(s) associated with the robot(s) the 'robots' specification. None removes the gripper, and any other (valid) model overrides the default gripper. Should either be single str if same gripper type is to be used for all robots or else it should be a list of the same length as "robots" param initialization_noise (dict or list of dict): Dict containing the initialization noise parameters. The expected keys and corresponding value types are specified below: :`'magnitude'`: The scale factor of uni-variate random noise applied to each of a robot's given initial joint positions. Setting this value to `None` or 0.0 results in no noise being applied. If "gaussian" type of noise is applied then this magnitude scales the standard deviation applied, If "uniform" type of noise is applied then this magnitude sets the bounds of the sampling range :`'type'`: Type of noise to apply. Can either specify "gaussian" or "uniform" Should either be single dict if same noise value is to be used for all robots or else it should be a list of the same length as "robots" param :Note: Specifying "default" will automatically use the default noise settings. Specifying None will automatically create the required dict with "magnitude" set to 0.0. table_full_size (3-tuple): x, y, and z dimensions of the table. table_friction (3-tuple): the three mujoco friction parameters for the table. use_camera_obs (bool): if True, every observation includes rendered image(s) use_object_obs (bool): if True, include object (cube) information in the observation. reward_scale (None or float): Scales the normalized reward function by the amount specified. If None, environment reward remains unnormalized reward_shaping (bool): if True, use dense rewards. placement_initializer (ObjectPositionSampler): if provided, will be used to place objects on every reset, else a UniformRandomSampler is used by default. has_renderer (bool): If true, render the simulation state in a viewer instead of headless mode. has_offscreen_renderer (bool): True if using off-screen rendering render_camera (str): Name of camera to render if `has_renderer` is True. Setting this value to 'None' will result in the default angle being applied, which is useful as it can be dragged / panned by the user using the mouse render_collision_mesh (bool): True if rendering collision meshes in camera. False otherwise. render_visual_mesh (bool): True if rendering visual meshes in camera. False otherwise. render_gpu_device_id (int): corresponds to the GPU device id to use for offscreen rendering. Defaults to -1, in which case the device will be inferred from environment variables (GPUS or CUDA_VISIBLE_DEVICES). control_freq (float): how many control signals to receive in every second. This sets the amount of simulation time that passes between every action input. horizon (int): Every episode lasts for exactly @horizon timesteps. ignore_done (bool): True if never terminating the environment (ignore @horizon). hard_reset (bool): If True, re-loads model, sim, and render object upon a reset call, else, only calls sim.reset and resets all robosuite-internal variables camera_names (str or list of str): name of camera to be rendered. Should either be single str if same name is to be used for all cameras' rendering or else it should be a list of cameras to render. :Note: At least one camera must be specified if @use_camera_obs is True. :Note: To render all robots' cameras of a certain type (e.g.: "robotview" or "eye_in_hand"), use the convention "all-{name}" (e.g.: "all-robotview") to automatically render all camera images from each robot's camera list). camera_heights (int or list of int): height of camera frame. Should either be single int if same height is to be used for all cameras' frames or else it should be a list of the same length as "camera names" param. camera_widths (int or list of int): width of camera frame. Should either be single int if same width is to be used for all cameras' frames or else it should be a list of the same length as "camera names" param. camera_depths (bool or list of bool): True if rendering RGB-D, and RGB otherwise. Should either be single bool if same depth setting is to be used for all cameras or else it should be a list of the same length as "camera names" param. camera_segmentations (None or str or list of str or list of list of str): Camera segmentation(s) to use for each camera. Valid options are: `None`: no segmentation sensor used `'instance'`: segmentation at the class-instance level `'class'`: segmentation at the class level `'element'`: segmentation at the per-geom level If not None, multiple types of segmentations can be specified. A [list of str / str or None] specifies [multiple / a single] segmentation(s) to use for all cameras. A list of list of str specifies per-camera segmentation setting(s) to use. Raises: AssertionError: [Invalid number of robots specified] """ def __init__( self, robots, env_configuration="default", controller_configs=None, gripper_types="default", initialization_noise="default", table_full_size=(0.8, 0.8, 0.05), table_friction=(1., 5e-3, 1e-4), use_camera_obs=True, use_object_obs=True, reward_scale=1.0, reward_shaping=False, placement_initializer=None, has_renderer=False, has_offscreen_renderer=True, render_camera="frontview", render_collision_mesh=False, render_visual_mesh=True, render_gpu_device_id=-1, control_freq=20, horizon=1000, ignore_done=False, hard_reset=True, camera_names="agentview", camera_heights=256, camera_widths=256, camera_depths=False, camera_segmentations=None, # {None, instance, class, element} renderer="mujoco", renderer_config=None, ): # settings for table top self.table_full_size = table_full_size self.table_friction = table_friction self.table_offset = np.array((0, 0, 0.8)) # reward configuration self.reward_scale = reward_scale self.reward_shaping = reward_shaping # whether to use ground-truth object states self.use_object_obs = use_object_obs # object placement initializer self.placement_initializer = placement_initializer super().__init__( robots=robots, env_configuration=env_configuration, controller_configs=controller_configs, mount_types="default", gripper_types=gripper_types, initialization_noise=initialization_noise, use_camera_obs=use_camera_obs, has_renderer=has_renderer, has_offscreen_renderer=has_offscreen_renderer, render_camera=render_camera, render_collision_mesh=render_collision_mesh, render_visual_mesh=render_visual_mesh, render_gpu_device_id=render_gpu_device_id, control_freq=control_freq, horizon=horizon, ignore_done=ignore_done, hard_reset=hard_reset, camera_names=camera_names, camera_heights=camera_heights, camera_widths=camera_widths, camera_depths=camera_depths, camera_segmentations=camera_segmentations, renderer=renderer, renderer_config=renderer_config, ) def reward(self, action=None): """ Reward function for the task. Sparse un-normalized reward: - a discrete reward of 2.25 is provided if the cube is lifted Un-normalized summed components if using reward shaping: - Reaching: in [0, 1], to encourage the arm to reach the cube - Grasping: in {0, 0.25}, non-zero if arm is grasping the cube - Lifting: in {0, 1}, non-zero if arm has lifted the cube The sparse reward only consists of the lifting component. Note that the final reward is normalized and scaled by reward_scale / 2.25 as well so that the max score is equal to reward_scale Args: action (np array): [NOT USED] Returns: float: reward value """ reward = 0. # sparse completion reward if self._check_success(): reward = 2.25 # use a shaping reward elif self.reward_shaping: # reaching reward cube_pos = self.sim.data.body_xpos[self.cube_body_id] gripper_site_pos = self.sim.data.site_xpos[ self.robots[0].eef_site_id] dist = np.linalg.norm(gripper_site_pos - cube_pos) reaching_reward = 1 - np.tanh(10.0 * dist) reward += reaching_reward # grasping reward if self._check_grasp(gripper=self.robots[0].gripper, object_geoms=self.cube): reward += 0.25 # Scale reward if requested if self.reward_scale is not None: reward *= self.reward_scale / 2.25 return reward def _load_model(self): """ Loads an xml model, puts it in self.model """ super()._load_model() # Adjust base pose accordingly xpos = self.robots[0].robot_model.base_xpos_offset["table"]( self.table_full_size[0]) self.robots[0].robot_model.set_base_xpos(xpos) # load model for table top workspace mujoco_arena = TableArena( table_full_size=self.table_full_size, table_friction=self.table_friction, table_offset=self.table_offset, ) # Arena always gets set to zero origin mujoco_arena.set_origin([0, 0, 0]) # initialize objects of interest tex_attrib = { "type": "cube", } mat_attrib = { "texrepeat": "1 1", "specular": "0.4", "shininess": "0.1", } redwood = CustomMaterial( texture="WoodRed", tex_name="redwood", mat_name="redwood_mat", tex_attrib=tex_attrib, mat_attrib=mat_attrib, ) self.cube = BoxObject( name="cube", size_min=[0.020, 0.020, 0.020], # [0.015, 0.015, 0.015], size_max=[0.022, 0.022, 0.022], # [0.018, 0.018, 0.018]) rgba=[1, 0, 0, 1], material=redwood, ) # Create placement initializer if self.placement_initializer is not None: self.placement_initializer.reset() self.placement_initializer.add_objects(self.cube) else: self.placement_initializer = UniformRandomSampler( name="ObjectSampler", mujoco_objects=self.cube, x_range=[-0.03, 0.03], y_range=[-0.03, 0.03], rotation=None, ensure_object_boundary_in_range=False, ensure_valid_placement=True, reference_pos=self.table_offset, z_offset=0.01, ) # task includes arena, robot, and objects of interest self.model = ManipulationTask( mujoco_arena=mujoco_arena, mujoco_robots=[robot.robot_model for robot in self.robots], mujoco_objects=self.cube, ) def _setup_references(self): """ Sets up references to important components. A reference is typically an index or a list of indices that point to the corresponding elements in a flatten array, which is how MuJoCo stores physical simulation data. """ super()._setup_references() # Additional object references from this env self.cube_body_id = self.sim.model.body_name2id(self.cube.root_body) def _setup_observables(self): """ Sets up observables to be used for this environment. Creates object-based observables if enabled Returns: OrderedDict: Dictionary mapping observable names to its corresponding Observable object """ observables = super()._setup_observables() # low-level object information if self.use_object_obs: # Get robot prefix and define observables modality pf = self.robots[0].robot_model.naming_prefix modality = "object" # cube-related observables @sensor(modality=modality) def cube_pos(obs_cache): return np.array(self.sim.data.body_xpos[self.cube_body_id]) @sensor(modality=modality) def cube_quat(obs_cache): return convert_quat(np.array( self.sim.data.body_xquat[self.cube_body_id]), to="xyzw") @sensor(modality=modality) def gripper_to_cube_pos(obs_cache): return obs_cache[f"{pf}eef_pos"] - obs_cache["cube_pos"] if \ f"{pf}eef_pos" in obs_cache and "cube_pos" in obs_cache else np.zeros(3) sensors = [cube_pos, cube_quat, gripper_to_cube_pos] names = [s.__name__ for s in sensors] # Create observables for name, s in zip(names, sensors): observables[name] = Observable( name=name, sensor=s, sampling_rate=self.control_freq, ) return observables def _reset_internal(self): """ Resets simulation internal configurations. """ super()._reset_internal() # Reset all object positions using initializer sampler if we're not directly loading from an xml if not self.deterministic_reset: # Sample from the placement initializer for all objects object_placements = self.placement_initializer.sample() # Loop through all objects and reset their positions for obj_pos, obj_quat, obj in object_placements.values(): self.sim.data.set_joint_qpos( obj.joints[0], np.concatenate([np.array(obj_pos), np.array(obj_quat)])) def visualize(self, vis_settings): """ In addition to super call, visualize gripper site proportional to the distance to the cube. Args: vis_settings (dict): Visualization keywords mapped to T/F, determining whether that specific component should be visualized. Should have "grippers" keyword as well as any other relevant options specified. """ # Run superclass method first super().visualize(vis_settings=vis_settings) # Color the gripper visualization site according to its distance to the cube if vis_settings["grippers"]: self._visualize_gripper_to_target(gripper=self.robots[0].gripper, target=self.cube) def _check_success(self): """ Check if cube has been lifted. Returns: bool: True if cube has been lifted """ cube_height = self.sim.data.body_xpos[self.cube_body_id][2] table_height = self.model.mujoco_arena.table_offset[2] # cube is higher than the table top above a margin return cube_height > table_height + 0.04
class Ultrasound(SingleArmEnv): """ This class corresponds to the ultrasound task for a single robot arm. Args: robots (str or list of str): Specification for specific robot arm(s) to be instantiated within this env (e.g: "Sawyer" would generate one arm; ["Panda", "Panda", "Sawyer"] would generate three robot arms) Note: Must be a single single-arm robot! env_configuration (str): Specifies how to position the robots within the environment (default is "default"). For most single arm environments, this argument has no impact on the robot setup. controller_configs (str or list of dict): If set, contains relevant controller parameters for creating a custom controller. Else, uses the default controller for this specific task. Should either be single dict if same controller is to be used for all robots or else it should be a list of the same length as "robots" param gripper_types (str or list of str): type of gripper, used to instantiate gripper models from gripper factory. Default is "default", which is the default grippers(s) associated with the robot(s) the 'robots' specification. None removes the gripper, and any other (valid) model overrides the default gripper. Should either be single str if same gripper type is to be used for all robots or else it should be a list of the same length as "robots" param table_full_size (3-tuple): x, y, and z dimensions of the table. table_friction (3-tuple): the three mujoco friction parameters for the table. use_camera_obs (bool): if True, every observation includes rendered image(s) use_object_obs (bool): if True, include object (cube) information in the observation. placement_initializer (ObjectPositionSampler): if provided, will be used to place objects on every reset, else a UniformRandomSampler is used by default. has_renderer (bool): If true, render the simulation state in a viewer instead of headless mode. has_offscreen_renderer (bool): True if using off-screen rendering render_camera (str): Name of camera to render if `has_renderer` is True. Setting this value to 'None' will result in the default angle being applied, which is useful as it can be dragged / panned by the user using the mouse render_collision_mesh (bool): True if rendering collision meshes in camera. False otherwise. render_visual_mesh (bool): True if rendering visual meshes in camera. False otherwise. render_gpu_device_id (int): corresponds to the GPU device id to use for offscreen rendering. Defaults to -1, in which case the device will be inferred from environment variables (GPUS or CUDA_VISIBLE_DEVICES). control_freq (float): how many control signals to receive in every second. This sets the amount of simulation time that passes between every action input. horizon (int): Every episode lasts for exactly @horizon timesteps. ignore_done (bool): True if never terminating the environment (ignore @horizon). hard_reset (bool): If True, re-loads model, sim, and render object upon a reset call, else, only calls sim.reset and resets all robosuite-internal variables camera_names (str or list of str): name of camera to be rendered. Should either be single str if same name is to be used for all cameras' rendering or else it should be a list of cameras to render. :Note: At least one camera must be specified if @use_camera_obs is True. :Note: To render all robots' cameras of a certain type (e.g.: "robotview" or "eye_in_hand"), use the convention "all-{name}" (e.g.: "all-robotview") to automatically render all camera images from each robot's camera list). camera_heights (int or list of int): height of camera frame. Should either be single int if same height is to be used for all cameras' frames or else it should be a list of the same length as "camera names" param. camera_widths (int or list of int): width of camera frame. Should either be single int if same width is to be used for all cameras' frames or else it should be a list of the same length as "camera names" param. camera_depths (bool or list of bool): True if rendering RGB-D, and RGB otherwise. Should either be single bool if same depth setting is to be used for all cameras or else it should be a list of the same length as "camera names" param. early_termination (bool): If True, episode is allowed to finish early. save_data (bool): If True, data from the episode is collected and saved. deterministic_trajectory (bool): If True, chooses a deterministic trajectory which goes along the x-axis of the torso. torso_solref_randomization (bool): If True, randomize the stiffness and damping parameter of the torso. initial_probe_pos_randomization (bool): If True, Gaussian noise will be added to the initial position of the probe. use_box_torso (bool): If True, use a box shaped soft body. Else, use a cylinder shaped soft body. Raises: AssertionError: [Invalid number of robots specified] """ def __init__( self, robots, env_configuration="default", controller_configs=None, gripper_types="UltrasoundProbeGripper", initialization_noise="default", table_full_size=(0.8, 0.8, 0.05), table_friction=100 * (1., 5e-3, 1e-4), use_camera_obs=True, use_object_obs=True, reward_scale=1.0, reward_shaping=False, placement_initializer=None, has_renderer=False, has_offscreen_renderer=True, render_camera="frontview", render_collision_mesh=False, render_visual_mesh=True, render_gpu_device_id=-1, control_freq=20, horizon=1000, ignore_done=False, hard_reset=True, camera_names="agentview", camera_heights=256, camera_widths=256, camera_depths=False, early_termination=False, save_data=False, deterministic_trajectory=False, torso_solref_randomization=False, initial_probe_pos_randomization=False, use_box_torso=True, ): assert gripper_types == "UltrasoundProbeGripper",\ "Tried to specify gripper other than UltrasoundProbeGripper in Ultrasound environment!" assert robots == "UR5e" or robots == "Panda", \ "Robot must be UR5e or Panda!" assert "OSC" or "HMFC" in controller_configs["type"], \ "The robot controller must be of type OSC or HMFC" # settings for table top self.table_full_size = table_full_size self.table_friction = table_friction self.table_offset = np.array((0, 0, 0.8)) # settings for joint initialization noise (Gaussian) self.mu = 0 self.sigma = 0.010 # settings for contact force running mean self.alpha = 0.1 # decay factor (high alpha -> discounts older observations faster). Must be in (0, 1) # reward configuration self.reward_scale = reward_scale self.reward_shaping = reward_shaping # error multipliers self.pos_error_mul = 90 self.ori_error_mul = 0.2 self.vel_error_mul = 45 self.force_error_mul = 0.7 self.der_force_error_mul = 0.01 # reward multipliers self.pos_reward_mul = 5 self.ori_reward_mul = 1 self.vel_reward_mul = 1 self.force_reward_mul = 3 self.der_force_reward_mul = 2 # desired states self.goal_quat = np.array([ -0.69192486, 0.72186726, -0.00514253, -0.01100909 ]) # Upright probe orientation found from experimenting (x,y,z,w) self.goal_velocity = 0.04 # norm of velocity vector self.goal_contact_z_force = 5 # (N) self.goal_der_contact_z_force = 0 # derivative of contact force # early termination configuration self.pos_error_threshold = 1.0 self.ori_error_threshold = 0.10 # examination trajectory self.top_torso_offset = 0.039 if use_box_torso else 0.041 # offset from z_center of torso to top of torso self.x_range = 0.15 # how large the torso is from center to end in x-direction self.y_range = 0.09 if use_box_torso else 0.05 # how large the torso is from center to end in y-direction self.grid_pts = 50 # how many points in the grid # whether to use ground-truth object states self.use_object_obs = use_object_obs # object placement initializer self.placement_initializer = placement_initializer # randomization settings self.torso_solref_randomization = torso_solref_randomization self.initial_probe_pos_randomization = initial_probe_pos_randomization # misc settings self.early_termination = early_termination self.save_data = save_data self.deterministic_trajectory = deterministic_trajectory self.use_box_torso = use_box_torso super().__init__( robots=robots, env_configuration=env_configuration, controller_configs=controller_configs, mount_types="default", gripper_types=gripper_types, initialization_noise=None, use_camera_obs=use_camera_obs, has_renderer=has_renderer, has_offscreen_renderer=has_offscreen_renderer, render_camera=render_camera, render_collision_mesh=render_collision_mesh, render_visual_mesh=render_visual_mesh, render_gpu_device_id=render_gpu_device_id, control_freq=control_freq, horizon=horizon, ignore_done=ignore_done, hard_reset=hard_reset, camera_names=camera_names, camera_heights=camera_heights, camera_widths=camera_widths, camera_depths=camera_depths, ) def reward(self, action=None): """ Reward function for the task. Args: action (np array): [NOT USED] Returns: float: reward value """ reward = 0. ee_current_ori = convert_quat(self._eef_xquat, to="wxyz") # (w, x, y, z) quaternion ee_desired_ori = convert_quat(self.goal_quat, to="wxyz") # position self.pos_error = np.square(self.pos_error_mul * (self._eef_xpos[0:-1] - self.traj_pt[0:-1])) self.pos_reward = self.pos_reward_mul * np.exp( -1 * np.linalg.norm(self.pos_error)) # orientation self.ori_error = self.ori_error_mul * distance_quat( ee_current_ori, ee_desired_ori) self.ori_reward = self.ori_reward_mul * np.exp(-1 * self.ori_error) # velocity self.vel_error = np.square( self.vel_error_mul * (self.vel_running_mean - self.goal_velocity)) self.vel_reward = self.vel_reward_mul * np.exp( -1 * np.linalg.norm(self.vel_error)) # force self.force_error = np.square( self.force_error_mul * (self.z_contact_force_running_mean - self.goal_contact_z_force)) self.force_reward = self.force_reward_mul * np.exp( -1 * self.force_error) if self._check_probe_contact_with_torso() else 0 # derivative force self.der_force_error = np.square( self.der_force_error_mul * (self.der_z_contact_force - self.goal_der_contact_z_force)) self.der_force_reward = self.der_force_reward_mul * np.exp( -1 * self.der_force_error) if self._check_probe_contact_with_torso( ) else 0 # add rewards reward += (self.pos_reward + self.ori_reward + self.vel_reward + self.force_reward + self.der_force_reward) return reward def _load_model(self): """ Loads an xml model, puts it in self.model """ super()._load_model() # Adjust base pose accordingly xpos = self.robots[0].robot_model.base_xpos_offset["table"]( self.table_full_size[0]) self.robots[0].robot_model.set_base_xpos(xpos) # Load model for table top workspace mujoco_arena = UltrasoundArena() # Arena always gets set to zero origin mujoco_arena.set_origin([0, 0, 0]) # Initialize torso object self.torso = SoftBoxObject( name="torso") if self.use_box_torso else SoftTorsoObject( name="torso") if self.torso_solref_randomization: # Randomize torso's stiffness and damping (values are taken from my project thesis) stiffness = np.random.randint(1300, 1600) damping = np.random.randint(17, 41) self.torso.set_damping(damping) self.torso.set_stiffness(stiffness) # Create placement initializer if self.placement_initializer is not None: self.placement_initializer.reset() self.placement_initializer.add_objects(self.torso) else: self.placement_initializer = UniformRandomSampler( name="ObjectSampler", mujoco_objects=[self.torso], x_range=[0, 0], #[-0.12, 0.12], y_range=[0, 0], #[-0.12, 0.12], rotation=None, ensure_object_boundary_in_range=False, ensure_valid_placement=True, reference_pos=self.table_offset, z_offset=0.005, ) # task includes arena, robot, and objects of interest self.model = UltrasoundTask( mujoco_arena=mujoco_arena, mujoco_robots=[robot.robot_model for robot in self.robots], mujoco_objects=[self.torso]) def _setup_references(self): """ Sets up references to important components. A reference is typically an index or a list of indices that point to the corresponding elements in a flatten array, which is how MuJoCo stores physical simulation data. """ super()._setup_references() # additional object references from this env self.torso_body_id = self.sim.model.body_name2id(self.torso.root_body) self.probe_id = self.sim.model.body_name2id( self.robots[0].gripper.root_body) def _setup_observables(self): """ Sets up observables to be used for this environment. Creates object-based observables if enabled Returns: OrderedDict: Dictionary mapping observable names to its corresponding Observable object """ observables = super()._setup_observables() pf = self.robots[0].robot_model.naming_prefix # Remove unnecessary observables del observables[pf + "joint_pos"] del observables[pf + "joint_pos_cos"] del observables[pf + "joint_pos_sin"] del observables[pf + "joint_vel"] del observables[pf + "gripper_qvel"] del observables[pf + "gripper_qpos"] del observables[pf + "eef_pos"] del observables[pf + "eef_quat"] sensors = [] # probe information modality = f"{pf}proprio" # Need to use this modality since proprio obs cannot be empty in GymWrapper @sensor(modality=modality) def eef_contact_force(obs_cache): return self.sim.data.cfrc_ext[self.probe_id][-3:] @sensor(modality=modality) def eef_torque(obs_cache): return self.robots[0].ee_torque @sensor(modality=modality) def eef_vel(obs_cache): return self.robots[0]._hand_vel @sensor(modality=modality) def eef_contact_force_z_diff(obs_cache): return self.z_contact_force_running_mean - self.goal_contact_z_force @sensor(modality=modality) def eef_contact_derivative_force_z_diff(obs_cache): return self.der_z_contact_force - self.goal_der_contact_z_force @sensor(modality=modality) def eef_vel_diff(obs_cache): return self.vel_running_mean - self.goal_velocity @sensor(modality=modality) def eef_pose_diff(obs_cache): pos_error = self._eef_xpos - self.traj_pt quat_error = difference_quat(self._eef_xquat, self.goal_quat) pose_error = np.concatenate((pos_error, quat_error)) return pose_error sensors += [ eef_contact_force, eef_torque, eef_vel, eef_contact_force_z_diff, eef_contact_derivative_force_z_diff, eef_vel_diff, eef_pose_diff ] names = [s.__name__ for s in sensors] # Create observables for name, s in zip(names, sensors): observables[name] = Observable( name=name, sensor=s, sampling_rate=self.control_freq, ) return observables def _reset_internal(self): """ Resets simulation internal configurations. """ super()._reset_internal() # Reset all object positions using initializer sampler if we're not directly loading from an xml if not self.deterministic_reset: # Sample from the placement initializer for all objects object_placements = self.placement_initializer.sample() # Loop through all objects and reset their positions for obj_pos, _, obj in object_placements.values(): self.sim.data.set_joint_qpos( obj.joints[0], np.concatenate( [np.array(obj_pos), np.array([0.5, 0.5, -0.5, -0.5])])) self.sim.forward() # update sim states # says if probe has been in touch with torso self.has_touched_torso = False # initial position of end-effector self.ee_initial_pos = self._eef_xpos # create trajectory self.trajectory = self.get_trajectory() # initialize trajectory step self.initial_traj_step = np.random.default_rng().uniform( low=0, high=self.num_waypoints - 1) self.traj_step = self.initial_traj_step # step at which to evaluate trajectory. Must be in interval [0, num_waypoints - 1] # set first trajectory point self.traj_pt = self.trajectory.eval(self.traj_step) self.traj_pt_vel = self.trajectory.deriv(self.traj_step) # give controller access to robot (and its measurements) if self.robots[0].controller.name == "HMFC": self.robots[0].controller.set_robot(self.robots[0]) # initialize controller's trajectory self.robots[0].controller.traj_pos = self.traj_pt self.robots[0].controller.traj_ori = T.quat2axisangle(self.goal_quat) # get initial joint positions for robot init_qpos = self._get_initial_qpos() # override initial robot joint positions self.robots[0].set_robot_joint_positions(init_qpos) # update controller with new initial joints self.robots[0].controller.update_initial_joints(init_qpos) # initialize previously contact force measurement self.prev_z_contact_force = 0 # intialize derivative of contact force self.der_z_contact_force = 0 # initialize running mean of velocity self.vel_running_mean = np.linalg.norm(self.robots[0]._hand_vel) # initialize running mean of contact force self.z_contact_force_running_mean = self.sim.data.cfrc_ext[ self.probe_id][-1] # initialize data collection if self.save_data: # simulation data self.data_ee_pos = np.array(np.zeros((self.horizon, 3))) self.data_ee_goal_pos = np.array(np.zeros((self.horizon, 3))) self.data_ee_ori_diff = np.array(np.zeros(self.horizon)) self.data_ee_vel = np.array(np.zeros((self.horizon, 3))) self.data_ee_goal_vel = np.array(np.zeros(self.horizon)) self.data_ee_running_mean_vel = np.array(np.zeros(self.horizon)) self.data_ee_quat = np.array(np.zeros( (self.horizon, 4))) # (x,y,z,w) self.data_ee_goal_quat = np.array(np.zeros( (self.horizon, 4))) # (x,y,z,w) self.data_ee_diff_quat = np.array(np.zeros( self.horizon)) # (x,y,z,w) self.data_ee_z_contact_force = np.array(np.zeros(self.horizon)) self.data_ee_z_goal_contact_force = np.array(np.zeros( self.horizon)) self.data_ee_z_running_mean_contact_force = np.array( np.zeros(self.horizon)) self.data_ee_z_derivative_contact_force = np.array( np.zeros(self.horizon)) self.data_ee_z_goal_derivative_contact_force = np.array( np.zeros(self.horizon)) self.data_is_contact = np.array(np.zeros(self.horizon)) self.data_q_pos = np.array( np.zeros((self.horizon, self.robots[0].dof))) self.data_q_torques = np.array( np.zeros((self.horizon, self.robots[0].dof))) self.data_time = np.array(np.zeros(self.horizon)) # reward data self.data_pos_reward = np.array(np.zeros(self.horizon)) self.data_ori_reward = np.array(np.zeros(self.horizon)) self.data_vel_reward = np.array(np.zeros(self.horizon)) self.data_force_reward = np.array(np.zeros(self.horizon)) self.data_der_force_reward = np.array(np.zeros(self.horizon)) # policy/controller data self.data_action = np.array( np.zeros((self.horizon, self.robots[0].action_dim))) def _post_action(self, action): """ In addition to super method, add additional info if requested Args: action (np.array): Action to execute within the environment Returns: 3-tuple: - (float) reward from the environment - (bool) whether the current episode is completed or not - (dict) info about current env step """ reward, done, info = super()._post_action(action) # Convert to trajectory timstep normalizer = (self.horizon / (self.num_waypoints - 1) ) # equally many timesteps to reach each waypoint self.traj_step = self.timestep / normalizer + self.initial_traj_step # update trajectory point self.traj_pt = self.trajectory.eval(self.traj_step) # update controller's trajectory self.robots[0].controller.traj_pos = self.traj_pt # update velocity running mean (simple moving average) self.vel_running_mean += ((np.linalg.norm(self.robots[0]._hand_vel) - self.vel_running_mean) / self.timestep) # update derivative of contact force z_contact_force = self.sim.data.cfrc_ext[self.probe_id][-1] self.der_z_contact_force = (z_contact_force - self.prev_z_contact_force ) / self.control_timestep self.prev_z_contact_force = z_contact_force # update contact force running mean (exponential moving average) self.z_contact_force_running_mean = self.alpha * z_contact_force + ( 1 - self.alpha) * self.z_contact_force_running_mean # check for early termination if self.early_termination: done = done or self._check_terminated() # collect data if self.save_data: # simulation data self.data_ee_pos[self.timestep - 1] = self._eef_xpos self.data_ee_goal_pos[self.timestep - 1] = self.traj_pt self.data_ee_vel[self.timestep - 1] = self.robots[0]._hand_vel self.data_ee_goal_vel[self.timestep - 1] = self.goal_velocity self.data_ee_running_mean_vel[self.timestep - 1] = self.vel_running_mean self.data_ee_quat[self.timestep - 1] = self._eef_xquat self.data_ee_goal_quat[self.timestep - 1] = self.goal_quat self.data_ee_diff_quat[self.timestep - 1] = distance_quat( convert_quat(self._eef_xquat, to="wxyz"), convert_quat(self.goal_quat, to="wxyz")) self.data_ee_z_contact_force[ self.timestep - 1] = self.sim.data.cfrc_ext[self.probe_id][-1] self.data_ee_z_goal_contact_force[self.timestep - 1] = self.goal_contact_z_force self.data_ee_z_running_mean_contact_force[ self.timestep - 1] = self.z_contact_force_running_mean self.data_ee_z_derivative_contact_force[ self.timestep - 1] = self.der_z_contact_force self.data_ee_z_goal_derivative_contact_force[ self.timestep - 1] = self.goal_der_contact_z_force self.data_is_contact[self.timestep - 1] = self._check_probe_contact_with_torso() self.data_q_pos[self.timestep - 1] = self.robots[0]._joint_positions self.data_q_torques[self.timestep - 1] = self.robots[0].torques self.data_time[self.timestep - 1] = ( self.timestep - 1) / self.horizon * 100 # percentage of completed episode # reward data self.data_pos_reward[self.timestep - 1] = self.pos_reward self.data_ori_reward[self.timestep - 1] = self.ori_reward self.data_vel_reward[self.timestep - 1] = self.vel_reward self.data_force_reward[self.timestep - 1] = self.force_reward self.data_der_force_reward[self.timestep - 1] = self.der_force_reward # policy/controller data self.data_action[self.timestep - 1] = action # save data if done and self.save_data: # simulation data sim_data_fldr = "simulation_data" self._save_data(self.data_ee_pos, sim_data_fldr, "ee_pos") self._save_data(self.data_ee_goal_pos, sim_data_fldr, "ee_goal_pos") self._save_data(self.data_ee_vel, sim_data_fldr, "ee_vel") self._save_data(self.data_ee_goal_vel, sim_data_fldr, "ee_goal_vel") self._save_data(self.data_ee_running_mean_vel, sim_data_fldr, "ee_running_mean_vel") self._save_data(self.data_ee_quat, sim_data_fldr, "ee_quat") self._save_data(self.data_ee_goal_quat, sim_data_fldr, "ee_goal_quat") self._save_data(self.data_ee_diff_quat, sim_data_fldr, "ee_diff_quat") self._save_data(self.data_ee_z_contact_force, sim_data_fldr, "ee_z_contact_force") self._save_data(self.data_ee_z_goal_contact_force, sim_data_fldr, "ee_z_goal_contact_force") self._save_data(self.data_ee_z_running_mean_contact_force, sim_data_fldr, "ee_z_running_mean_contact_force") self._save_data(self.data_ee_z_derivative_contact_force, sim_data_fldr, "ee_z_derivative_contact_force") self._save_data(self.data_ee_z_goal_derivative_contact_force, sim_data_fldr, "ee_z_goal_derivative_contact_force") self._save_data(self.data_is_contact, sim_data_fldr, "is_contact") self._save_data(self.data_q_pos, sim_data_fldr, "q_pos") self._save_data(self.data_q_torques, sim_data_fldr, "q_torques") self._save_data(self.data_time, sim_data_fldr, "time") # reward data reward_data_fdlr = "reward_data" self._save_data(self.data_pos_reward, reward_data_fdlr, "pos") self._save_data(self.data_ori_reward, reward_data_fdlr, "ori") self._save_data(self.data_vel_reward, reward_data_fdlr, "vel") self._save_data(self.data_force_reward, reward_data_fdlr, "force") self._save_data(self.data_der_force_reward, reward_data_fdlr, "derivative_force") # policy/controller data self._save_data(self.data_action, "policy_data", "action") return reward, done, info def visualize(self, vis_settings): """ Args: vis_settings (dict): Visualization keywords mapped to T/F, determining whether that specific component should be visualized. Should have "grippers" keyword as well as any other relevant options specified. """ # Run superclass method first super().visualize(vis_settings=vis_settings) def _check_success(self): return False def _check_terminated(self): """ Check if the task has completed one way or another. The following conditions lead to termination: - Collision with table - Joint Limit reached - Deviates from trajectory position - Deviates from desired orientation when in contact with torso - Loses contact with torso Returns: bool: True if episode is terminated """ terminated = False # Prematurely terminate if reaching joint limits if self.robots[0].check_q_limits(): print(40 * '-' + " JOINT LIMIT " + 40 * '-') terminated = True # Prematurely terminate if probe deviates away from trajectory (represented by a low position reward) if np.linalg.norm(self.pos_error) > self.pos_error_threshold: print(40 * '-' + " DEVIATES FROM TRAJECTORY " + 40 * '-') terminated = True # Prematurely terminate if probe deviates from desired orientation when touching probe if self._check_probe_contact_with_torso( ) and self.ori_error > self.ori_error_threshold: print(40 * '-' + " (TOUCHING BODY) PROBE DEVIATES FROM DESIRED ORIENTATION " + 40 * '-') terminated = True # Prematurely terminate if probe loses contact with torso if self.has_touched_torso and not self._check_probe_contact_with_torso( ): print(40 * '-' + " LOST CONTACT WITH TORSO " + 40 * '-') terminated = True return terminated def _get_contacts_objects(self, model): """ Checks for any contacts with @model (as defined by @model's contact_geoms) and returns the set of contact objects currently in contact with that model (excluding the geoms that are part of the model itself). Args: model (MujocoModel): Model to check contacts for. Returns: set: Unique contact objects containing information about contacts with this model. Raises: AssertionError: [Invalid input type] """ # Make sure model is MujocoModel type assert isinstance(model, MujocoModel), \ "Inputted model must be of type MujocoModel; got type {} instead!".format(type(model)) contact_set = set() for contact in self.sim.data.contact[:self.sim.data.ncon]: # check contact geom in geoms; add to contact set if match is found g1, g2 = self.sim.model.geom_id2name( contact.geom1), self.sim.model.geom_id2name(contact.geom2) if g1 in model.contact_geoms or g2 in model.contact_geoms: contact_set.add(contact) return contact_set def _check_probe_contact_with_upper_part_torso(self): """ Check if the probe is in contact with the upper/top part of torso. Touching the torso on the sides should not count as contact. Returns: bool: True if probe both is in contact with upper part of torso and inside distance threshold from the torso center. """ # check for contact only if probe is in contact with upper part and close to torso center if self._eef_xpos[-1] >= self._torso_xpos[-1] and np.linalg.norm( self._eef_xpos[:2] - self._torso_xpos[:2]) < 0.14: return self._check_probe_contact_with_torso() return False def _check_probe_contact_with_torso(self): """ Check if the probe is in contact with the torso. NOTE This method utilizes the autogenerated geom names for MuJoCo-native composite objects Returns: bool: True if probe is in contact with torso """ gripper_contacts = self._get_contacts_objects(self.robots[0].gripper) reg_ex = "[G]\d+[_]\d+[_]\d+$" # check contact with torso geoms based on autogenerated names for contact in gripper_contacts: g1, g2 = self.sim.model.geom_id2name( contact.geom1), self.sim.model.geom_id2name(contact.geom2) match1 = re.search(reg_ex, g1) match2 = re.search(reg_ex, g2) if match1 != None or match2 != None: contact_normal_axis = contact.frame[:3] self.has_touched_torso = True return True return False def _check_probe_contact_with_table(self): """ Check if the probe is in contact with the tabletop. Returns: bool: True if probe is in contact with table """ return self.check_contact(self.robots[0].gripper, "table_collision") def get_trajectory(self): """ Calculates a trajectory between two waypoints on the torso. The waypoints are extracted from a grid on the torso. The first waypoint is given at time t=0, and the second waypoint is given at t=1. If self.deterministic_trajectory is true, a deterministic trajectory along the x-axis of the torso is calculated. Args: Returns: (klampt.model.trajectory Object): trajectory """ grid = self._get_torso_grid() if self.deterministic_trajectory: start_point = [0.062, -0.020, 0.896] end_point = [-0.032, -0.075, 0.896] #start_point = [grid[0, 0], grid[1, 4], self._torso_xpos[-1] + self.top_torso_offset] #end_point = [grid[0, int(self.grid_pts / 2) - 1], grid[1, 5], self._torso_xpos[-1] + self.top_torso_offset] else: start_point = self._get_waypoint(grid) end_point = self._get_waypoint(grid) milestones = np.array([start_point, end_point]) self.num_waypoints = np.size(milestones, 0) return trajectory.Trajectory(milestones=milestones) def _get_torso_grid(self): """ Creates a 2D grid in the xy-plane on the top of the torso. Args: Returns: (numpy.array): grid. First row contains x-coordinates and the second row contains y-coordinates. """ x = np.linspace( -self.x_range + self._torso_xpos[0] + 0.03, self.x_range + self._torso_xpos[0], num=self.grid_pts ) # add offset in negative range due to weird robot angles close to robot base y = np.linspace(-self.y_range + self._torso_xpos[1], self.y_range + self._torso_xpos[1], num=self.grid_pts) x = np.array([x]) y = np.array([y]) return np.concatenate((x, y)) def _get_waypoint(self, grid): """ Extracts a random waypoint from the grid. Args: Returns: (numpy.array): waypoint """ x_pos = np.random.choice(grid[0]) y_pos = np.random.choice(grid[1]) z_pos = self._torso_xpos[-1] + self.top_torso_offset return np.array([x_pos, y_pos, z_pos]) def _get_initial_qpos(self): """ Calculates the initial joint position for the robot based on the initial desired pose (self.traj_pt, self.goal_quat). If self.initial_probe_pos_randomization is True, Guassian noise is added to the initial position of the probe. Args: Returns: (np.array): n joint positions """ pos = np.array(self.traj_pt) if self.initial_probe_pos_randomization: pos = self._add_noise_to_pos(pos) pos = self._convert_robosuite_to_toolbox_xpos(pos) ori_euler = mat2euler(quat2mat(self.goal_quat)) # desired pose T = SE3(pos) * SE3.RPY(ori_euler) # find initial joint positions if self.robots[0].name == "UR5e": robot = rtb.models.DH.UR5() sol = robot.ikine_min(T, q0=self.robots[0].init_qpos) # flip last joint around (pi) sol.q[-1] -= np.pi return sol.q elif self.robots[0].name == "Panda": robot = rtb.models.DH.Panda() sol = robot.ikine_min(T, q0=self.robots[0].init_qpos) return sol.q def _convert_robosuite_to_toolbox_xpos(self, pos): """ Converts origin used in robosuite to origin used for robotics toolbox. Also transforms robosuite world frame (vectors x, y, z) to to correspond to world frame used in toolbox. Args: pos (np.array): position (x,y,z) given in robosuite coordinates and frame Returns: (np.array): position (x,y,z) given in robotics toolbox coordinates and frame """ xpos_offset = self.robots[0].robot_model.base_xpos_offset["table"]( self.table_full_size[0])[0] zpos_offset = self.robots[0].robot_model.top_offset[-1] - 0.016 # the numeric offset values have been found empirically, where they are chosen so that # self._eef_xpos matches the desired position. if self.robots[0].name == "UR5e": return np.array([ -pos[0] + xpos_offset + 0.08, -pos[1] + 0.025, pos[2] - zpos_offset + 0.15 ]) if self.robots[0].name == "Panda": return np.array([ pos[0] - xpos_offset - 0.06, pos[1], pos[2] - zpos_offset + 0.111 ]) def _add_noise_to_pos(self, init_pos): """ Adds Gaussian noise (variance) to the position. Args: init_pos (np.array): initial probe position Returns: (np.array): position with added noise """ z_noise = np.random.normal(self.mu, self.sigma, 1) xy_noise = np.random.normal(self.mu, self.sigma / 4, 2) x = init_pos[0] + xy_noise[0] y = init_pos[1] + xy_noise[1] z = init_pos[2] + z_noise[0] return np.array([x, y, z]) def _save_data(self, data, fldr, filename): """ Saves data to desired path. Args: data (np.array): Data to be saved fldr (string): Name of destination folder filename (string): Name of file Returns: """ os.makedirs(fldr, exist_ok=True) idx = 1 path = os.path.join(fldr, filename + "_" + str(idx) + ".csv") while os.path.exists(path): idx += 1 path = os.path.join(fldr, filename + "_" + str(idx) + ".csv") pd.DataFrame(data).to_csv(path, header=None, index=None) @property def _torso_xpos(self): """ Grabs torso center position Returns: np.array: torso pos (x,y,z) """ return np.array(self.sim.data.body_xpos[self.torso_body_id])
def _load_model(self): """ Loads an xml model, puts it in self.model """ super()._load_model() # Adjust base pose accordingly xpos = self.robots[0].robot_model.base_xpos_offset["table"]( self.table_full_size[0]) self.robots[0].robot_model.set_base_xpos(xpos) # load model for table top workspace #mujoco_arena = TableArena( # table_full_size=self.table_full_size, # table_friction=self.table_friction, # table_offset=self.table_offset, #) mujoco_arena = EmptyArena() # Arena always gets set to zero origin mujoco_arena.set_origin([0, 0, 0]) # initialize objects of interest tex_attrib = { "type": "ball", } mat_attrib = { "texrepeat": "1 1", "specular": "0.4", "shininess": "0.1", } redwood = CustomMaterial( texture="WoodRed", tex_name="redwood", mat_name="redwood_mat", tex_attrib=tex_attrib, mat_attrib=mat_attrib, ) self.ball = BallObject( name="ball", size_min=[0.018], # [0.015, 0.015, 0.015], size_max=[0.024], # [0.018, 0.018, 0.018]) rgba=[1, 0, 0, 1], density=1, joints=[ {"name":"ball_x", "type":"slide", "damping":100, "axis":"1 0 0", }, {"name":"ball_y", "type":"slide", "damping":100, "axis":"0 1 0"}, {"name":"ball_z", "type":"slide", "axis":"0 0 1", "damping":100, } ] ) # get current end effector position #max_pos = [-.75, .75] #np.clip(self.max_object_distance + eef_pos[:3], -1, 1) #min_pos = [-.75, .75] #np.clip(-self.max_object_distance + eef_pos[:3], -1, 1) ## Create placement initializer # TODO I think we need to create every time since joint position will be different if self.placement_initializer is not None: self.placement_initializer.reset() self.placement_initializer.add_objects(self.ball) else: self.placement_initializer = UniformRandomSampler( name="ObjectSampler", mujoco_objects=self.ball, x_range=[-.75, .75], y_range=[-.75, .75], rotation=None, ensure_object_boundary_in_range=False, ensure_valid_placement=True, reference_pos=self.table_offset, ) # task includes arena, robot, and objects of interest self.model = ManipulationTask( mujoco_arena=mujoco_arena, mujoco_robots=[robot.robot_model for robot in self.robots], mujoco_objects=self.ball, )