def test_time_dep_ode(self): t0 = 1.2 T = 5.7 ocp = Ocp(t0=t0, T=5.7) x = ocp.state() ocp.set_der(x, ocp.t**2) ocp.subject_to(ocp.at_t0(x) == 0) tf = t0 + T x_ref = tf**3 / 3 - t0**3 / 3 ocp.solver('ipopt') opts = {"abstol": 1e-9, "reltol": 1e-9} for method in [ MultipleShooting(intg='rk'), MultipleShooting(intg='cvodes', intg_options=opts), MultipleShooting(intg='idas', intg_options=opts), DirectCollocation() ]: ocp.method(method) sol = ocp.solve() ts, xs = sol.sample(x, grid='control') x_ref = ts**3 / 3 - t0**3 / 3 assert_array_almost_equal(xs, x_ref)
def test_basic_t0_free(self): xf = 2 t0 = 0 for T in [2]: for x0 in [0, 1]: for b in [1, 2]: for method in [ MultipleShooting(N=4, intg='rk'), MultipleShooting(N=4, intg='cvodes'), MultipleShooting(N=4, intg='idas'), DirectCollocation(N=4) ]: ocp = Ocp(t0=FreeTime(2), T=T) x = ocp.state() u = ocp.control() ocp.set_der(x, u) ocp.subject_to(u <= b) ocp.subject_to(-b <= u) ocp.add_objective(ocp.tf) ocp.subject_to(ocp.at_t0(x) == x0) ocp.subject_to(ocp.at_tf(x) == xf) ocp.subject_to(ocp.t0 >= 0) ocp.solver('ipopt') ocp.method(method) sol = ocp.solve() ts, xs = sol.sample(x, grid='control') self.assertAlmostEqual(xs[0], x0, places=6) self.assertAlmostEqual(xs[-1], xf, places=6) self.assertAlmostEqual(ts[0], t0) self.assertAlmostEqual(ts[-1], t0 + T)
def bang_bang_problem(stage_method): ocp = Ocp(T=FreeTime(1)) p = ocp.state() v = ocp.state() u = ocp.control() ocp.set_der(p, v) ocp.set_der(v, u) ocp.subject_to(u <= 1) ocp.subject_to(-1 <= u) ocp.add_objective(ocp.T) ocp.subject_to(ocp.at_t0(p) == 0) ocp.subject_to(ocp.at_t0(v) == 0) ocp.subject_to(ocp.at_tf(p) == 1) ocp.subject_to(ocp.at_tf(v) == 0) ocp.solver('ipopt') ocp.method(stage_method) return (ocp, ocp.solve(), p, v, u)
# After bounce 1 stage2, p2, v2 = create_bouncing_ball_stage(ocp) ocp.subject_to(stage2.at_t0(v2) == -0.9 * stage1.at_tf(v1)) ocp.subject_to(stage2.at_t0(p2) == stage1.at_tf(p1)) ocp.subject_to(stage2.t0 == stage1.tf) ocp.subject_to(stage2.at_tf(p2) == 0) # After bounce 2 stage3, p3, v3 = create_bouncing_ball_stage(ocp) ocp.subject_to(stage3.at_t0(v3) == -0.9 * stage2.at_tf(v2)) ocp.subject_to(stage3.at_t0(p3) == stage2.at_tf(p2)) ocp.subject_to(stage3.t0 == stage2.tf) ocp.subject_to(stage3.at_tf(v3) == 0) ocp.subject_to(stage3.at_tf(p3) == 0.5) # Stop at a half meter! ocp.solver('ipopt') # Solve sol = ocp.solve() # Plot the 3 bounces plt.figure() ts1, ps1 = sol(stage1).sample(p1, grid='integrator') ts2, ps2 = sol(stage2).sample(p2, grid='integrator') ts3, ps3 = sol(stage3).sample(p3, grid='integrator') plt.plot(ts1, ps1) plt.plot(ts2, ps2) plt.plot(ts3, ps3) plt.show(block=True)
def test_dae_casadi(self): # cross check with dae_colloation xref = 0.1 # chariot reference l = 1. #- -> crane, + -> pendulum m = 1. M = 1. g = 9.81 ocp = Ocp(T=5) x = ocp.state() y = ocp.state() w = ocp.state() dx = ocp.state() dy = ocp.state() dw = ocp.state() xa = ocp.algebraic() u = ocp.control() ocp.set_der(x, dx) ocp.set_der(y, dy) ocp.set_der(w, dw) ddx = (w - x) * xa / m ddy = g - y * xa / m ddw = ((x - w) * xa - u) / M ocp.set_der(dx, ddx) ocp.set_der(dy, ddy) ocp.set_der(dw, ddw) ocp.add_alg((x - w) * (ddx - ddw) + y * ddy + dy * dy + (dx - dw)**2) ocp.add_objective( ocp.at_tf((x - xref) * (x - xref) + (w - xref) * (w - xref) + dx * dx + dy * dy)) ocp.add_objective( ocp.integral((x - xref) * (x - xref) + (w - xref) * (w - xref))) ocp.subject_to(-2 <= (u <= 2)) ocp.subject_to(ocp.at_t0(x) == 0) ocp.subject_to(ocp.at_t0(y) == l) ocp.subject_to(ocp.at_t0(w) == 0) ocp.subject_to(ocp.at_t0(dx) == 0) ocp.subject_to(ocp.at_t0(dy) == 0) ocp.subject_to(ocp.at_t0(dw) == 0) #ocp.subject_to(xa>=0,grid='integrator_roots') ocp.set_initial(y, l) ocp.set_initial(xa, 9.81) # Pick an NLP solver backend # NOTE: default scaling strategy of MUMPS leads to a singular matrix error ocp.solver( 'ipopt', { "ipopt.linear_solver": "mumps", "ipopt.mumps_scaling": 0, "ipopt.tol": 1e-12 }) # Pick a solution method method = DirectCollocation(N=50) ocp.method(method) # Solve sol = ocp.solve() assert_array_almost_equal( sol.sample(xa, grid='integrator', refine=1)[1][0], 9.81011622448889) assert_array_almost_equal( sol.sample(xa, grid='integrator', refine=1)[1][1], 9.865726317147214) assert_array_almost_equal( sol.sample(xa, grid='integrator')[1][0], 9.81011622448889) assert_array_almost_equal( sol.sample(xa, grid='integrator')[1][1], 9.865726317147214) assert_array_almost_equal( sol.sample(xa, grid='control')[1][0], 9.81011622448889) assert_array_almost_equal( sol.sample(xa, grid='control')[1][1], 9.865726317147214)
def test_stage_cloning_t0_T(self): for t0_stage, t0_sol_stage in [(None, 0), (-1, -1), (FreeTime(-1), -1)]: for T_stage, T_sol_stage in [(None, 2), (2, 2), (FreeTime(1), 2)]: kwargs = {} if t0_stage is not None: kwargs["t0"] = t0_stage if T_stage is not None: kwargs["T"] = T_stage stage = Stage(**kwargs) p = stage.state() v = stage.state() u = stage.control() stage.set_der(p, v) stage.set_der(v, u) stage.subject_to(u <= 1) stage.subject_to(-1 <= u) stage.add_objective(stage.tf) stage.subject_to(stage.at_t0(p) == 0) stage.subject_to(stage.at_t0(v) == 0) stage.subject_to(stage.at_tf(p) == 1) stage.subject_to(stage.at_tf(v) == 0) stage.method(MultipleShooting(N=2)) for t0, t0_sol in ([] if t0_stage is None else [ (None, t0_sol_stage) ]) + [(-1, -1), (FreeTime(-1), -1)]: for T, T_sol in ([] if T_stage is None else [ (None, T_sol_stage) ]) + [(2, 2), (FreeTime(1), 2)]: ocp = Ocp() kwargs = {} if t0 is not None: kwargs["t0"] = t0 if T is not None: kwargs["T"] = T mystage = ocp.stage(stage, **kwargs) if mystage.is_free_starttime(): ocp.subject_to(mystage.t0 >= t0_sol) ocp.solver('ipopt') sol = ocp.solve() tolerance = 1e-6 ts, ps = sol(mystage).sample(p, grid='integrator', refine=10) ps_ref = np.hstack( ((0.5 * np.linspace(0, 1, 10 + 1)**2)[:-1], np.linspace(0.5, 1.5, 10 + 1) - 0.5 * np.linspace(0, 1, 10 + 1)**2)) np.testing.assert_allclose(ps, ps_ref, atol=tolerance) ts_ref = t0_sol + np.linspace(0, 2, 10 * 2 + 1) ts, vs = sol(mystage).sample(v, grid='integrator', refine=10) np.testing.assert_allclose(ts, ts_ref, atol=tolerance) vs_ref = np.hstack((np.linspace(0, 1, 10 + 1)[:-1], np.linspace(1, 0, 10 + 1))) np.testing.assert_allclose(vs, vs_ref, atol=tolerance) u_ref = np.array([1.0] * 10 + [-1.0] * 11) ts, us = sol(mystage).sample(u, grid='integrator', refine=10) np.testing.assert_allclose(us, u_ref, atol=tolerance)